[1] Daniel M. Kuchta, IBM T. J. Watson Research Center, “High-Capacity VCSEL Links” OFC 2017, Mar. 2017.
[2] S. Nakagawa, D. Kuchta,C. Schow, R John, A .Larry .Coldren,Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC 2008, pp. OThS3, San Diego, CA, Feb., 2008.
[3] W. W. Chow, K. D. Choquette, M. H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared
and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE of Quantum Electronics, vol. 33, no. 10,pp. 1810-1824, Oct.,1997.
[4] K. D. Choquette and H. Q. Hou, “Vertical-cavity surface emitting laser:Moving from research to manufacturing,”Proc. IEEE, vol. 85, no. 11,pp. 1730-1739, Nov., 1997.
[5] Y-C chang, L. A. Coldrem “Effocoent,High-data-rate Tapered oxide-aperture VCSELs using multiple oxide layer,” IEEE Journal of Quantum Electronics, vol. 15, no.3, pp.704-715, May., 2009.
[6] Y. Mohammad “Optimizing Optical output power of single-mode vcsels using multiple oxide layer,” IEEE Journal of Quantum Electronics, vol. 19, no. 4 , July., 2013.
[7] 顏志成,“具有超低耗能,傳輸資料比值在850nm波段超高速(40Gbit/s)面射型雷射,” 國立中央大學研究所論文(民國101)
[8] R. W. Herrick, A. Dafinca, P. Farthouat, A. A. Grillo,, “Corrosion-Based Failure of Oxide-aperture VCSELs,” IEEE Journal of Quantum Electronic, vol. 49, no. 12, pp. 1045-1052, Dec., 2013.
[9] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al., “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fiber,” Electron. Lett., vol. 26, no. 19, pp. 1628-1629, Sept., 1990.
[10] Y. J. Yang, T. G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting laser,”, Soc. Photo-opt., vol. 1418, pp. 414-421, Nov., 1991.
[11] Y. J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang, “Low threshold operation of a GaAs single quantum well mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, no. 16, pp. 1780-1782, Apr., 1991.
[12] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart “Self-interstitial mechanism for Zn diffusion-induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures,” J. Appl. Phys., vol. 73, pp. 3769-3781, April, 1993.
[13] J. A. Van Vechten, “ Intermixing of an AlAs-GaAs superlattice by Zn diffusion ,” J. Appl. Phys. vol 55, no.10, pp.7082-7084, Oct., 1984.
[14] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion, ”Appl. Phys. Lett., vol. 38, no.10, pp. 776-778 , May,1981.
[15] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattice,” Semicond. Sci. Tech., no. 4, pp. 841-846, 1989.
[16] 陳志誠,“穩態單橫模和穩定極化的面射型雷射,”國立台灣大學電機工程學系博士論文 (民國90年)[17] R. G. Hunsperger, Integrated Optics: Theory and Technology, Hong Kong, Springer-Verlag, 77, (1992).
[18] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, “Diffusion of zinc into Ga1-xAlxAs ,” Appl. Phys. Lett., vol 47, no.11, pp.1193-1195, 1985.
[19]C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison, “Transverse mode characteristics of vertical-cavity surface-emitting lasers” Appl. Phys. Lett., vol. 57, pp.218-220, 1990.
[20] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” IEEE J. Appl. Phys., vol. 36, no.12, pp. 3770-3778, Dec .,1965.
[21] K. Nakajima, “Calculation of stresses in InxGa1−xAs/InPstrained multilayer heterostructures,” J. Appl. Phys., vol. 72,p. 5213, 1992.
[22] K. D. Choquette, K. M. Geib, I. H. Carol, Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE J. Sel. Topics In Quantum Electron., vol. 3, no. 3, pp.916-926, June, 1997.
[23] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and R. Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers,” IEEE Photon. Tech. Lett., vol. 7, no.11, pp.1237-1239, Nov., 1995.
[24] N. Hplonyak, Jr., and J. M. Dallesasse, “Dependence on doping type (p/n) of the water vapor oxidation of high‐gap AlxGa1-xAs ,” Appl. Phys. Lett., vol. 60, no. 25, pp. 3165-3167, Jun., 1992.
[25] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., vol. 69, pp.1935-1937 ,1996.
[26] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol 8, no.6 pp.740-742, June, 1996.
[27] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,” Appl. Phys. Lett., vol. 66, pp.1723-1725, 1995.
[28] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib, “Cavity characteristics of selectively oxidized vertical-cavity lasers,”Appl. Phys. Lett., vol. 66, pp.3413-3415, 1995.
[29] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol.12, pp. 64840J-1-64840J-12, 2007.
[30] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold 57 planarized Vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, no. 4, pp. 234-236, Apr., 1990.
[31] A. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh, and A. Larsson, Member, IEEE, “Single Fundamental-Mode Output Power Exceeding 6mW From VCSELs With a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 368-370, Feb., 2004.
[32] A. Haglund, J. S. Gustavsson, P. Modh, Member, IEEE, and A. Larsson, “Dynamic Mode Stability Analysis of Surface Relief VCSELs Under Strong RF Modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 8, pp.1602-1604, Aug. , 2005.
[33] A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh ,T.Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett., vol. 85, no. 22, Nov. , 2004.
[34] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep., 2001.
[35] M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission Over 1-km OM4 multimode fiber at 25 Gb/susing a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. ,vol. 25, no.18, pp. 1823–1825, 2013.
[36] Y. Liu, W.-C. Ng, B. Klein, and K. Hess, “Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity-surface-emitting lasers, ” IEEE J. Quantum Electron., vol. 39, no. 1, pp. 99–108, Jan., 2003.
[37] H. A. Haus, “Waves and Fields in Optoelectronics,” Preritice-Hall, Englewood Cliffs, NJ, p.99, 1984 .
[38] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photonics. Tech .Lett., vol. 20, no. 13, pp. 1121-1123, 2008.
[39] W. W. Chow, K. D. Choquette, H. Mary. Crawford, L. Lear. Kevin, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., vol. 33, pp. 1810-1824, 1997.
[40] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, highspeed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, 2007.
[41] Gunter Larisch, Philip Moser, Member, IEEE, James A. Lott, Senior Member, IEEE, and Dieter Bimberg, Fellow, IEEE, “Impact of Photon Lifetime on the Temperature Stability of 50 Gb/s 980 nm VCSELs,” IEEE Photonics Technology Letters, Vol. 28, Nov., 2016.
[42] P. Moser, J.A. Lott, P. Wolf, G. Larisch, H. Li and D. Bimberg,” Error-free 46 Gbit/s operation of oxideconfined 980 nm VCSELs at 85°C,” Electronics letters, Sept., 2014.