跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊鈞硯
研究生(外文):Jun-Yen Yang
論文名稱(外文):Generalized Riemann Solutions to Compressible Euler-Poisson Equations in Two-dimensional Space
指導教授:洪盟凱洪盟凱引用關係
指導教授(外文):John M. Hong
學位類別:碩士
校院名稱:國立中央大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:31
中文關鍵詞:Euler-Poisson方程
外文關鍵詞:Riemann SolverEuler-Poisson equationEuler-Poisson equation in 2DSplitting method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
在這個問題中,我們考慮一個在二維時空下可壓縮的Euler-Poisson方程組。這個方程組是由守恆律和Poisson方程式組合在一起的hyperbolic系統,它是一個混合型的偏微分方程組。這個方程組是在描述流體的質量和動量在重力的影響下的守恆性,不管是在物理、天體物理、還是宇宙學中,它都是非常重要的偏微分方程模型。此方程的初值邊界問題的解,由於震波的發生而導致缺乏解的規律性,使得找不到解的全域存在性。此外,也沒有一個好的數值方法來建構此方程的近似解。

在這篇文章中,基於Operator-Splitting方法,我們提供一個數值方法來算這個方程的Riemann問題的近似解。這個近似解是由entropy solution和擾動項所組成,entropy solution是解齊次守恆律的Riemann問題所解出來的,擾動項是解一個利用Operator-Splitting方法和平均線性系統中的不連續係數所得到的近似的常微分方程問題。
In this thesis, we consider the compressible Euler-Poisson equations in 2-dimensional space. The equations are in the form of hyperbolic system of balance laws coupled with Poisson equation, which is a mixed-type system of partial differential equations. The mixed-type system describes the conservation of mass, momentum of fluid under the effect of gravitational force, which is one of the most important PDE models in physics, astrophysics and Cosmology. The global existence of solutions to the initial-boundary value problem of the compressible Euler-Poisson equations in 2-dimensional space has been unsolved due to the lack of regularity of solutions caused by the appearance of shock waves. In addition, there is no efficient numerical method of constructing the approximate solutions for the system. In this article, we provide a numerical method for the approximate solution of Riemann problem based on the framework of operator-splitting method. The approximate solution consists of the entropy solution of the Riemann problem of associated homogeneous conservation laws and the perturbation term solving a linearized hyperbolic system with discontinuous coefficients. The perturbation term is obtained by solving an approximate ODEs problem modified by the operator-splitting method and averaging process to the discontinuous coefficients in the linearized hyperbolic system.
Contents
中文摘要i
Abstract ii
Contents iii
1 Introduction 1
2 Operator-splitting Method for Euler-Poisson Equations 5
3 Construction of Approximate Solutions to (2:6) and (2:7) 10
3.1 Construct of Approximate Solution of (2:6) . . . . . . . . . . . . . . . . . . . 10
3.2 Construct of Approximate Solution of (2:7) . . . . . . . . . . . . . . . . . . . 16
3.3 Construction of the perturbation term U
. . . . . . . . . . . . . . . . . . . . . 19
4 Steady States 20
[1] S.W. Chou, J.M. Hong, Y.C. Su, An extension of Glimm’s method to the gas dynamical
model of transonic flows, Nonlinearity 26 (2013), pp. 1581-1597.
[2] S.W. Chou, J.M. Hong, Y.C. Su, Global entropy solutions of the general nonlinear hyperbolic
balance laws with time-evolution flux and source, Mathods Appl. Anal., 19 (2012),
pp. 43–76.
[3] S.W. Chou, J.M. Hong, Y.C. Su, The initial-boundary value problem of hyperbolic integrodifferential
systems of nonlinear balance laws, Nonlinear Anal. 75 (2012), pp. 5933-5960.
[4] C.M. Dafermos, L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity and
dissipation, Indiana Univ. Math. J. 31 (1982), pp. 471-491.
[5] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Commun.
Pure Appl. Math. 18 (1965), pp. 697-715.
[6] J. B. G
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top