[1] C. Willich, C. Westner, M. Henke, F. Leucht, J. Kallo, K.A. Friedrich, Pressurized Solid Oxide Fuel Cells with Reformate as Fuel, Journal of The Electrochemical Society, Vol. 159, pp. F711-F716, 2012.
[2] J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd ed., Wiley, New York,
2003.
[3] S.C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells, Elsevier, 2003.
[4] X. Zhang, S.H. Chan, G. Li, H.K. Ho, J. Li, Z. Feng, A review of integration strategies for solid oxide fuel cells, Journal of Power Sources, Vol. 195, pp. 685–702, 2010.
[5] S.E. Veyo, L.A. Shockling, J.T. Dederer, J.E. Gillet, W.L. Lundberg, Tubular solid oxide fuel cell/gas turbine hybrid cycle power system: Status, Journal of Engineering for Gas Turbines and Power, Vol. 124, pp. 845-849, 2002.
[6] Greentech Media, GE Threatens to Enter Fuel Cell Market, Compete With Bloom, July 24, 2014
[7] C. Li, Y. Shi, N. Caia, Elementary reaction kinetic model of an anode-supported solid oxide fuel cell fueled with syngas, Journal of Power Sources, Vol. 195, pp. 2266-2282, 2012.
[8] M.A. Buccheri, A. Singh, J.M. Hill, Anode- versus electrolyte-supported Ni-YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performace and carbon formation for the direct utilization of dry methane, Journal of Power Sources, Vol. 193, pp. 968-976, 2011.
[9] M.D. Gross, J.M. Vohs, R.J. Gorte, Recent progress in SOFC anodes for direct utilization of hydrocarbons, Journal of Materials Chemistry, Vol. 17, pp. 3070-3077, 2007.
[10] 洪立翰,合成氣於加壓型SOFC之性能量測及其微氣渦輪機複合系統之模擬分析,碩士論文,國立中央大學,2015。[11] P.C. Wu, H.S. Jheng, S.S. Shy, Electrochemical Impedance Measurement and Analysis of Anodic Concentration Polarization for Pressurized Solid Oxide Fuel Cells, Journal of The Electrochemical Society, Vol. 161(4), F513-F517, 2014.
[12] S.S. Shy, Y.D. Hsieh, C.M. Huang, Y.H. Chan, Comparison of Electrochemical Impedance Measurements between Pressurized Anode-Supported and Electrolyte Planar Solid Oxide Fuel Cells, Journal of The Electrochemical Society, Vol. 162(3), F172-F177, 2015.
[13] 鄭浩昇,加壓型固態氧化物燃料電池量測與分析:壓力、溫度與質量流率效應,碩士論文,國立中央大學,2012。[14] 謝易達,加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析,碩士論文,國立中央大學,2013。[15] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,2013。[16] 李雪茹,加壓SOFC陰極半電池實驗研究,碩士論文,國立中央大學,2013。[17] 詹彥信,固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗頻譜實驗研究,碩士論文,國立中央大學,2014。[18] S.C. Singal, Solid oxide fuel cell for stationary, mobile, and military applications, Solid State Ionics, Vol. 152 pp. 405-410, 2002.
[19] University of Cambridge, TLP Libriary, http://www.doitpoms.ac.uk/tlplib/fuel-cells/sofc_electrolyte.php
[20] J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd Edition, John Wiley & Sons. Ltd., England, 2003.
[21] J. Fleig, SOLID OXIDE FUEL CELL CATHODES: Polarization Mechanisms and Modeling of the Electrochemical Performance, Annual Review of Materials Research, Vol. 33, pp. 361-382, 2003.
[22] S.K. Dong, W.N. Jung, K. Rashid, A. Kashimoto, Design and numerical analysis of a planar anode-supported SOFC stack, Renewable Energy, Vol. 94, pp. 637-650, 2016.
[23] J.G. Park, J.M. Bae, J.Y. Kim, The current density and temperature distributions of anode-supported flat-tube solid oxide fuel cells affected by various channel designs, Journal of Hydrogen Energy, Vol. 36, pp. 9936-9944, 2011.
[24] J.G. Park, J.M. Bae, Characterization of electrochemical reaction and thermos-fluid flow in metal-supported solid oxide fuel cell stacks with various manifold designs, Journal of Hydrogen Energy, Vol. 37, pp. 1717-1730, 2012.
[25] D. Sarantaridis, A. Atkinson, Redox Cycling of Ni-Based Solid Oxide Fuel Cell Anodes: A Review, Fuel Cell, Vol. 7, pp. 246-258, 2007.
[26] M. Stelter, A. Reinert, B.E. Mai, M. Kuznecov, Engineering aspects and hardware verification of a volume producible solid oxide fuel cell stack design for diesel auxiliary power units, Journal of Power Sources, Vol. 154, pp. 448-455, 2006.
[27] N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection for solid oxide fuel cell technology: A review, Progress in Materials Science, Vol. 72, pp. 141-337, 2015.
[28] A. Kumar, A. Jaiswal, M. Sanbui, S. Omar, Scandia stabilized zirconia-ceria solid electrolyte (xSc1CeSZ, 5< x<11) for IT-SOFCs: Structure and conductivity studies, Scripta Materialia, Vol. 121, pp. 10-13, 2016.
[29] J. Nielsen, P. Hjalmarsson, M.H. Hansen, P. Blennow, Effect of low temperature in-situ sintering on the impedance and the performance of intermediate temperature solid oxide fuel cell cathodes, Journal of Power Sources, Vol. 245, pp. 418-428, 2014.
[30] S. Campanari, L. Mastropasqua, M. Gazzani, P. Chiesa, M.C. Romano, Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture e Part A: Methodology and reference cases, Journal of Power Sources, Vol. 324, pp. 598-614, 2016.
[31] R. O’Hayre, D.M. Barnett, F.B. Prinz, The Triple Phase Boundary A Mathematical Model and Experimental Investigations for Fuel Cells, Journal of The Electrochemical Society, Vol. 152, pp. A439-A444, 2005.
[32] S.S. Shy, Y.D. Hsieh, C.M. Huang, Y.H. Chan, Comparison of Electrochemical Impedance Measurements between Pressurized Anode-Supported and Electrolyte Planar Solid Oxide Fuel Cells, Journal of The Electrochemical Society, Vol. 162(3), F1-F6, 2015.
[33] 李信宏,棋盤式雙極板尺寸流道效應對固態氧化物燃料電池性能之影響,碩士論文,國立中央大學,2010。[34] J.C. Njodzefon, D. Klotz, A. Kromp, A. Weber, E. Ivers-Tiff´ee, Electrochemical Modeling of the Current-Voltage Characteristics of an SOFC in Fuel Cell and Electrolyzer Operation Modes, Journal of The Electrochemical Society, Vol. 160, pp. F313-F323, 2013.
[35] M. Ni, M.K.H. Leung, D.Y.C. Leung, Parametric study of solid oxide fuel cell performance, Energy Conversion and Management, Vol. 48, pp. 1525-1535, 2007.
[36] M. Cooper, K. Channa, R.D Silva, D.J. Bayless, Comparison of LSV/YSZ and LSV/GDC SOFC Anode Performance in Coal Syngas Containing H2S, Journal of The Electrochemical Society, Vol. 157, pp. B1713-1718, 2010.
[37] M. Riegraf, G¨. Schiller, R´emi Costa, K. A. Friedrich, A. Latz, V. Yurkiv, Elementary Kinetic Numerical Simulation of Ni/YSZ SOFC Anode Performance Considering Sulfur Poisoning, Journal of The Electrochemical Society, Vol. 162, pp. F65-F75, 2015.
[38] T. Aloui, K. Halouani, H.W. Nie, T.L. Wen, Analytical modeling of polarizations in a solid oxide fuel cell using biomass syngas product as fuel, Applied Thermal Engineering, Vol. 27, pp. 731-737, 2007.
[39] C. Li, Y. Shi, N. Cai, Elementary reaction kinetic model of an anode-supported solid oxide fuel cell fueled with syngas, Journal of Power Sources, Vol. 195, pp. 2266-2282, 2010.
[40] Z.R. Xu, X.Z. Fu, J.L. Luo, K.T. Chuang, Carbon Deposition on Vanadium-Based Anode Catalyst for SOFC Using Syngas as Fuel, Journal of The Electrochemical Society, Vol. 157, pp. B1556-B1560, 2010.
[41] K. Sasaki, Y. Hori, R. Kikuchi, K. Eguchi, A. Ueno, H. Takeuchi, M. Aizawa, K. Tsujimoto, H. Tajiri, H. Nishikawa, Y. Uchida, Current-Voltage Characteristics and Impedance Analysis of Solid Oxide Fuel Cells for Mixed H2 and CO Gases, Journal of The Electrochemical Society, Vol. 149, pp. A227-A233, 2002.
[42] H. Miao, W.G. Wang, T.S. Li, T. Chen, S.S. Sun, C. Xu, Effects of coal syngas major compositions on Ni/YSZ anode-supported solid oxide fuel cells, Journal of Power Sources, Vol. 161, pp. 2230-223, 2010.
[43] P. Tiwari, S. Basu, Performance studies of electrolyte-supported solid oxide fuel cell with Ni–YSZ and Ni–TiO2–YSZ as anodes, Journal of Solid State Electrochemical, Vol. 18, pp. 805-812, 2014.
[44] J. Laurencin, G. Delette, O. Sicardy, S. Rosini, F. Lefebvre-Joud, Impact of redox cycles on performances of solid oxide fuel cells: Case of the electrolyte supported cells, Journal of Power Sources, Vol. 195, pp. 2747-2753, 2010.
[45] Y. Patcharavorachot, A. Arpornwichanop, A. Chuachuensuk, Electrochemical study of a planar solid oxide fuel cell: Role of support structures, Journal of Power Sources, Vol. 177, pp. 254-261, 2008.
[46] Y.D. Hsieh, Y.H. Chan, S.S. Shy, Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte-supported planar solid oxide fuel cells, Journal of Power Sources, Vol. 299, pp. 1-10, 2015.
[47] T. Chen, W.G. Wang, H. Miao, T. Li, C. Xu, Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas, Journal of Power Sources, Vol. 196, pp. 2461-2468, 2011.
[48] E.J. Carins, A.D. Tevebaugh, CHO Gas Phase Compositions in Equilibrium with Carbon, and Carbon Deposition Boundaries at One Atmosphere, Journal of chemical and engineering data, Vol. 9, pp. 453-462, 1964.
[49] J. Xiao, Y. Xie, J. Liu, M. Liu, Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels, Journal of Power Sources, Vol. 268, pp. 508-516, 2014.
[50] V. Alzate-Restrepo, J.M. Hill, Carbon deposition on Ni/YSZ anodes exposed to CO/H2 feeds, Journal of Power Sources, Vol. 195, pp. 1344-1351, 2010.
[51] X.F. Ye, S.R. Wang, J. Zhou, F.R. Zeng, H.W. Nie, T.L. Wen, Assessment of the performance of Ni-yttria-stabilized zirconia anodes in anode-supported Solid Oxide Fuel Cells operating on H2–CO syngas fuels, Journal of Power Sources, Vol. 195, pp. 7264–7267, 2010
[52] H. J. Grabke, Thermodynamics, mechanisms and kinetics of metal dusting, Materials and Corrosion, Vol. 49, pp. 303-308, 1998.
[53] J. Nielsen, M. Mogensen, SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study, Solid State Ionics, Vol. 189, pp. 74-81, 2011.
[54] S. Primdahl, M. Mogensen, Gas conversion impedance: A test geometry effect in characterization of solid oxide fuel cell anodes, Journal of The Electrochemical Society, Vol. 145, pp. 2431-2438, 1998.
[55] S. Primdahl, M. Mogensen, Gas diffusion impedance in characterization of solid oxide fuel cell anodes, Journal of The Electrochemical Society, Vol. 146, pp. 2827-2833, 1999.