|
1. 鄭振東, 超音波工程. Vol. 初版. 1999: 全華科技圖書. pp.1-2~pp.1.17, pp.7-16~pp.7-17. 2. 弘塑科技股份有限公司. RCA Cleam製程. Available from: http://www.gptc.com.tw/tw/product/product_detail-16. 3. 國家奈米元件實驗室. 化學清洗蝕刻區標準操作程序. Available from: http://www.lcis.com.tw/paper_store/paper_store/semichem-20147134181602.pdf. 4. W. Cady and M. Varadarajan, RCA clean replacement. Journal of the Electrochemical Society, 1996. 143(6): p. 2064-2067. 5. I. Kashkoush, et al., PARTICLE REMOVAL USING ULTRASONIC. 6. E. Herbert, S. Balibar, and F. Caupin, Cavitation pressure in water. Physical Review E, 2006. 74(4): p. 041603. 7. E.B. Flint and K.S. Suslick, The_Temperature_of_Cavitation. Science, New Series, 1991. 253: p. 1397-1399. 8. A. Brotchie, F. Grieser, and M. Ashokkumar, Effect of Power and Frequency on Bubble-Size Distributions in Acoustic Cavitation. Physical Review Letters, 2009. 102(8): p. 084302. 9. Z. Han, M. Keswani, and S. Raghavan, Megasonic Cleaning of Blanket and Patterned Samples in Carbonated Ammonia Solutions for Enhanced Particle Removal and Reduced Feature Damage. IEEE Transactions on Semiconductor Manufacturing, 2013. 26(3): p. 400-405. 10. S. Kumari, et al., Control of sonoluminescence signal in deionized water using carbon dioxide. Microelectronic Engineering, 2011. 88(12): p. 3437-3441. 11. B.-K. Kang, et al., Acoustic Cavitation Behavior in Isopropyl Alcohol Added Cleaning Solution. 2013. 12. B.-K. Kang, M.-S. Kim, and J.-G. Park, Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning. Ultrasonics Sonochemistry, 2014. 21(4): p. 1496-1503. 13. C. Franklin. Megasonic agitation allows removal of chemically amplified photo-resists. 2009. SPIE. 14. S.H. Kim, et al., The effect of ultrasonic agitation on the stripping of photoresist using supercritical CO2 and co-solvent formulation. Microelectronic Engineering, 2009. 86(2): p. 171-175. 15. K. Qin and Y. Li, Mechanisms of particle removal from silicon wafer surface in wet chemical cleaning process. Journal of Colloid and Interface Science, 2003. 261(2): p. 569-574. 16. A.A. Busnaina, I.I. Kashkoush, and G.W. Gale, An experimental study of megasonic cleaning of silicon wafers. Journal of the Electrochemical Society, 1995. 142(8): p. 2812-2817. 17. A.A. Busnaina and G.W. Gale, Ultrasonic and megasonic particle removal. Proc. Precis. Clean, 1995. 15: p. 347-359. 18. K. Bakhtari, et al., Experimental and numerical investigation of nanoparticle removal using acoustic streaming and the effect of time. Journal of the electrochemical society, 2006. 153(9): p. G846-G850. 19. H. Lin, A.A. Busnaina, and N. Moumen, Surface Cleaning Mechanisms and Future Cleaning Requirements. IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 2000. 20. K. Bakhtari, et al., Experimental and analytical study of submicrometer particle removal from deep trenches. Journal of the Electrochemical Society, 2006. 153(9): p. C603-C607. 21. H. Lin, A.A. Busnaina, and I.I. Suni. Cleaning of high aspect ratio submicron trenches. in IEEE International Symposium on Semiconductor Manufacturing Conference, Proceedings. 2002. 22. Q. Qi and J. Brereton, Mechanisms of Removal of Micron-Sized Particles by High-Frequency Ultrasonic Waves. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control, 1995. 42. 23. 馮若, 超聲手冊. 2001: 南京大學出版社. 24. M. Kazemi, H. Treichel, and R. Ligutom. Substrate cleaning using ultrasonics/megasonics. in 2011 IEEE/SEMI Advanced Semiconductor Manufacturing Conference. 2011. 25. J.N. Israelachvili, Intermolecular and Surface Forces: Revised Third Edition. 2011: Elsevier Science. pp.266. 26. M. Olim, A theoretical evaluation of megasonic cleaning for submicron particles. Journal of The Electrochemical Society, 1997. 144(10): p. 3657-3659. 27. W. Kim, et al., Mechanism of particle removal by megasonic waves. Applied Physics Letters, 2009. 94(8): p. 081908. 28. 葉怡成, 高等實驗計畫. Vol. 初版. 2009, 台灣: 五南圖書出版股份有限公司. pp.22-31, pp.54-61.
|