|
[1] C. E. Nebel, “From Gemstone to Semiconductor”, Nature Materials, vol.2, pp.431-432, 2003 [2] B. J. Baliga, “Power Semiconductor Device Figure of Merit for High-Frequency Applications”, IEEE Electron Device Letters, vol.10, pp.455-457, 1989 [3] S. T. Lee, Y. Lifshitz, “The Road to Diamond Wafers”, Nature, vol.424, pp.500-501, 2003 [4] Shinichi Shikata, “Single Crystal Diamond Wafers for High Power Electronics”, Diamond & Related Materials, vol.65, pp.168–175, 2016 [5] P. Calvani, A. Corsaro, F. Sinisi, M. C. Rossi, G. Conte, E. Giovine, W. Ciccognani, E. Limiti, “Diamond MESFET Technology Development for Microwave Integrated Circuits”, European Microwave Integrated Circuits Conference , pp.149-151, 2009 [6] V. B. Efimov, L. P. Mezhov-Deglin, “Phonon Scattering in Diamond Films”, Physica B, vol.263-264, pp.745-748, 1999 [7] V. Goyal, D. Kotchetkov, S. Subrina, M. Rahman, A. A. Balandin, “Thermal Conduction Through Diamond-Silicon Heterostructures”, IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp.1-6, 2010 [8] M. Kasu, ”Diamond Epitaxy: Basics and Applications”, Crystal Growth and Characterization of Materials, vol.62, pp. 317–328, 2016 [9] R. M. Hazen, “The Diamond Makers”, Cambridge university, pp.61~77, 1991 71 [10] H. T. Hall, “Diamond Synthesis”, US2947608, 1960 [11] H. Sumiya, S. Satoh, “High-Pressure Synthesis of High-Purity Diamond Crystal”, Diamond & Related Materials 5, pp.1359-1365, 1996 [12] B.V. Spitsyn, L.L. Bouilov and B.V. Derjaguin, “Vapor Growth of Diamond on Diamond and Other Surfaces”, Journal of Crystal Growth, vol.52, pp.219-226, 1981 [13] P. W. May, “Diamond Thin Films: A 21st-Century Material”, Physical and Engineering Sciences, vol.358, pp. 473-495, 2000 [14] X. Jiang , C. L. Jia, “Direct Local Epitaxy of Diamond on Si(100) and Surface-Roughening-Induced Crystal Misorientation”, Physical Review Letters, vol.84, pp. 3658-3661, 2000 [15] H. Toyota, S. Nomura, Y. Takahashi, S. Mukasa, “Submerged Synthesis of Diamond in Liquid Alcohol Plasma”, Diamond & Related Materials, vol.17, pp.1902–1904, 2008 [16] Y. Takahashi, H. Toyota, S. Nomura, S. Mukasa, T. Inoue, “A Comparison of Diamond Growth Rate Using In-Liquid and Conventional Plasma Chemical Vapor Deposition Methods”, Journal of Applied Physics, vol.105, pp.1-4, 2009 [17] Y. Harada, R. Hishinuma, C. Terashima, H. Uetsuka, K. Nakata, T. Kondo, M. Yuasa, A. Fujishima, “Rapid Growth of Diamond and Its Morphology By In-Liquid Plasma CVD”, Diamond & Related Materials, vol.63, pp.12-16, 2016 [18] H. Yamada, A. Chayahara, Y. Mokuno, N. Tsubouchi, S. Shikata, N. Fujimori, “Developments of Elemental Technologies to Produce Inch-Size Single-Crystal Diamond Wafers”, Diamond & Related Materials, vol.20, 72 pp.616–619, 2011 [19] Y. Mokuno, A. Chayahara, Y. Soda, H. Yamada, Y. Horino, N. Fujimori, “High Rate Homoepitaxial Growth of Diamond by Microwave Plasma CVD with Nitrogen Addition”, Diamond & Related Materials, vol.15, pp.455–459, 2006 [20] M. W. Geis, “Device Quality Diamond Substrates”, Diamond and Related Materials, vol.1, pp.684-687, 1992 [21] G. Janssen, L.J. Giling, ““Mosaic” Growth of Diamond”, Diamond and Related Materials, vol.4, pp.1025-1031, 1995 [22] Y. Mokuno, A. Chayahara, H. Yamada, “Synthesis of Large Single Crystal Diamond Plates by High Rate Homoepitaxial Growth Using Microwave Plasma CVD and Lift-off Process”, Diamond & Related Materials, vol.17, pp.415–418, 2008 [23] Y. Mokuno, A. Chayahara, H. Yamada, N. Tsubouchi, “Improving Purity and Size of Single-Crystal Diamond Plates Produced by High-Rate CVD Growth and Lift-off Process Using Ion Implantation”, Diamond & Related Materials, vol.18, pp.1258–1261, 2009 [24] R. A. Khmelnitskiy, “Prospects for The Synthesis of Large Single-Crystal Diamonds”, Physics-Uspekhi, vol.58, pp.134-149, 2015 [25] H. Yamada, A. Chayahara, Y. Mokuno, H. Umezawa, S. Shikata, N. Fujimori, “Fabrication of 1 Inch Mosaic Crystal Diamond Wafers”, Applied Physics Express, vol.3, pp.051301, 2010 [26] H. Yamada, A. Chayahara, Y. Mokuno, N. Tsubouchi, S. Shikata, “Uniform Growth and Repeatable Fabrication of Inch-Sized Wafers of A Single-Crystal Diamond”, Diamond & Related Materials, vol.33, pp.27–31, 73 2013 [27] H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, S. Shikata, "A 2-In. Mosaic Wafer Made of A Single-Crystal Diamond", Applied Physics Letters, vol.104, pp.1-4, 2014 [28] J. W. Glesener, “Hole Capture in Boron-Doped Diamond”, Applied Physics Letters, vol.64, pp.217-219 , 1994 [29] E. Gheeraert, S. Koizumi, T. Teraji, H. Kanda, M. Nesladek, "Electronic States of Boron and Phosphorus in Diamond", Physica Status Solidi (a), vol.174, pp.39-51, 1999 [30] B. B. Li, M. C. Tosin, A. C. Peterlevitz, V. Baranauskas,"Measurement of The Substitutional Nitrogen Activation Energy in Diamond Films", Applied Physics Letters, vol.73, pp.812-814, 1998 [31] I. Bello, M. K. Fung, W. J. Zhang, K. H. Lai, Y. M. Wang, Z. F. Zhou, R. K.W. Yu, C. S. Lee, S. T. Lee, "Effects at Reactive Ion Etching of CVD Diamond", Thin Solid Films, vol.368, pp.222-226, 2000 [32] D. Liu, L. Gou, J. Xu, K. Gao, X. Kang, “Investigations on Etching Resistance of Undoped and Boron Doped Polycrystalline Diamond Films by Oxygen Plasma Etching”, Vacuum, vol.128, pp.80-84, 2016 [33] G. F. Ding, H. P. Mao, Y. L. Cai, Y. H. Zhang, X. Yao, X. L. Zhao, “Micromachining of CVD Diamond by RIE for MEMS Applications”, Diamond & Related Materials, vol.14, pp.1543 – 1548, 2005 [34] O. Dorsch, M. Werner, E. Obermeier, “Dry Etching of Undoped and Boron Doped Polycrystalline Diamond Films”, Diamond & Related Materials, vol.4, pp. 456-459, 1995 [35] H. Shiomi, "Reactive Ion Etching of Diamond in O2 and CF4 Plasma, and 74 Fabrication of Porous Diamond for Field Emitter Cathodes", Japanese Journal of Applied Physics, vol.36, p.2207-2004, 1997 [36] Y. Andoa, Y. Nishibayashia, K. Kobashia, T. Hiraob, K. Ourab, “Smooth and High-Rate Reactive Ion Etching of Diamond”, Diamond and Related Materials, vol.11, pp.824–827, 2002 [37] T. Izak, A. Kromka, O. Babchenko, M. Ledinsky, K. Hruska, E. Verveniotis, “Comparative Study on Dry Etching of Polycrystalline Diamond Thin Films”, Vacuum, vol.86, pp.799-802, 2012 [38] Z. Cao, M. W. Varney, D. M. Aslam, “Optimization of Reactive Ion Etching of Polycrystalline Diamond for MEMS Applications”, Journal of Microelectromechanical Systems, vol.24, pp.1681-1683, 2015 [39] M. W. Geis, D. D. Rathman, D. J. Ehrlich, R. A. Murphy, W. T. Lindley, “High-Temperature Point-Contact Transistors and Schottky Diodes Formed on Synthetic Boron-Doped Diamond” , IEEE Electron Device Letters, vol.8, pp.341-343,1981 [40] K. Okano, H. Kiyota, T. Iwasaki, Y. Nakamura, Y.Akiba. , T. Kurosu, M. Iida,T. Nakamura, “Fabrication of A Diamond p-n Junction Diode Using The Chemical Vapour Deposition Technique”, Solid-State Electronics, vol.34, pp.139-141, 1991 [41] H. Shiomi, Y. Nishibayashi, N. Fujimori ,” High-Voltage Schottky Diodes on Boron-Doped Diamond Epitaxial Films”, Japanese Journal of Applied Physics, vol.29, 1990 [42] W. Ebert, “High current p/p-Diamond Schottky Diode”, IEEE Electron Device Letters, vol.15, pp. 289–291, 1994 [43] Y. Gurbuz, W. P. Kang, J. L. Davidson, D. V. Kerns, Q. Zhou, “PECVD 75 Diamond-Based High Performance Power Diodes”, IEEE Transactions On Power Electronics, vol.20, pp.1-9, 2005 [44] E. Kohn, A. Denisenko, “Concepts for Diamond Electronics”, Thin Solid Films, vol.515, pp.4434-4439, 2006 [45] J. Isberg, J. Hammersberg, E. Johansson, T. Wikstro ̈m, D. J. Twitchen, A. J. Whitehead, S. E. Coe, G. A. Scarsbrook, “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond”, Science, vol. 297, pp.1670-1672, 2002 [46] A. Vescan, I. Daumiller, P. Gluche, W. Ebert, E. Kohn, “Very High Temperature Operation of Diamond Schottky Diode”, IEEE Electron Device Letters, vol.18, pp.556-558, 1997 [47] M. Brezeanu, “Diamond Schottky Structures”, International Semiconductor Conference, vol.1, pp.15-25, 2009 [48] M. Brezeanu, S. J. Rashid, T. Butler, N. L. Rupeswghe, F. Udrea, K. Okano, G. A. J. Amaratunga, D. J. Twitchen, A. Tajani, C. Wort, A. Garraway, L. Coubeck, P. Talyor, D. G. Hasko, “High Voltage Schottky Barrier Diodes IN Synthetic Single Crystal Diamond”, International Semiconductor Conference, vol.2, pp.385-388, 2004 [49] H. Umezawa, S. Shikata, “Diamond High-Temperature Power Devices”, International Symposium on Power Semiconductor Devices & IC's, pp.259-262, 2009 [50] S. Kone, H. Ding, H. Schneider, K. Isoird, G. Civrac, “High Performances CVD Diamond Schottky Barrier Diode - Simulation and Carrying Out”, European Conference on Power Electronics and Applications, pp.1-8, 2009 [51] D. Eon, A. Traoré, J. Pernot, E. Gheeraert, “Recent Progress on Diamond 76 Schottky Diode”,International Symposium on Power Semiconductor Devices & ICs, pp.55-58, 2016 [52] A. Traore, P. Muret, A. Fiori, D. Eon, E. Gheeraert, J. Pernot, “Zr/Oxidized Diamond Interface for High Power Schottky Diodes”, Applied Physics Letters, vol.104, pp.1-4, 2014 [53] T. Makino, H. Kato, N. Tokuda, M. Ogura, D. Takeuchi, K. Oyama, S. Tanimoto, H. Okushi, S. Yamasaki, ” Diamond Schottky-pn Diode without Trade-off Relationship Between On-Resistance and Blocking Voltage”, Physica Status Solidi (a), vol.207, pp.2105–2109, 2010 [54] T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, S. Yamasaki, “Device Design of Diamond Schottky-pn Diode for Low-Loss Power Electronics”, Japanese Journal of Applied Physics, vol.51, pp.1-7, 2012 [55] T. Matsumoto, T. Mukose, T. Makino, D. Takeuchi, S. Yamasaki, T. Inokuma, N. Tokuda, “Diamond Schottky-pn Diode Using Lightly Nitrogen-Doped Layer”, Diamond & Related Materials, vol.75, pp.152–154, 2017 [56] M. Dutta, F.A.M. Koeck, R.J. Nemanich, S. Chowdhury, "P-I-N Diodes Enabled by Homoepitaxially Grown Phosphorus Doped Diamond With Breakdown Electric Field >1.25 MV/cm", Device Research Conference, pp.184-184, 2015 [57] M. Dutta, F. A. M. Koeck, R. Hathwar, S. M. Goodnick, R. J. Nemanich, S. Chowdhury, “Demonstration of Diamond-Based Schottky p-i-n Diode With Blocking Voltage > 500 V”, IEEE Elecron Device Letters, vol.37, pp.1170-1173, 2016 [58] M. Dutta, F. A. M. Koeck, W. Li, R. J. Nemanich, S. Chowdhury, “High 77 Voltage Diodes in Diamond Using (100)- and (111)- Substrates”, Elecron Device Letters, vol.38, pp.600-603, 2017 [59] H. Umezawa, T. Matsumoto, S. Shikata, “Diamond Metal–Semiconductor Field-Effect Transistor With Breakdown Voltage Over 1.5 kV ”, IEEE Elecron Device Letters, vol.35, pp.1112-1114, 2014 [60] H. Shiomi, Y. Nishibayashi, N. Toda, S. Shikata, “Pulse-Doped Diamond P-Channel Metal Semiconductor Field-Effect Transistor ”, IEEE Elecron Device Letters, vol.16, pp.36-38,1995 [61] A. Vescan, P. Gluche, W. Ebert, and E. Kohn, “High-Temperature, High-Voltage Operation of Pulse-Doped Diamond MESFET”, IEEE Elecron Device Letters, vol.18, pp.222-224, 1997 [62] A. J. Tessmer, K. Das and D. L. Dreifus, “Polycrystalline Diamond Field-Effect Transistors”, Diamond & Related Materials, vol.1, pp.89-92, 1992 [63] D. L. Dreifus, A. J. Tessmer, J. S. Holmes, C. Kao, D. M. Malta, L. S. Plano, B. R. Stoner, "Diamond Field-Effect Transistors", High-Temperature Electronics, pp.466-477, 1999 [64] L. Y. S. Pang, S. S. M. Chan, C. Johnston, P. R. Chalker, R. B. Jackman, “High Temperature Polycrystalline Diamond Metal-Insulator- Semiconductor Field-Effect-Transistor”, Diamond & Related Materials, vol.6, pp.333-338, 1997 [65] K. Tsugawa, K. Kitatani, H. Noda, A. Hokazono, K. Hirose, M. Tajima, H. Kawarada, "High-Performance Diamond Surface-Channel Field-Effect Transistors and Their Operation Mechanism", Diamond & Related Materials, vol.8, pp.927-933, 1999 78 [66] F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, "Origin of Surface Conductivity in Diamond", Physical Review Letters, vol.85, pp.3472-3475, 2000 [67] H. Sato, M. Kasu, "Maximum Hole Concentration for Hydrogen-Terminated Diamond Surfaces With Various Surface Orientations Obtained by Exposure to Highly Concentrated NO2", Diamond & Related Materials, vol.31, pp.47–49, 2013 [68] H. Kawarada, M. Aoki, M. Ito, “Enhancement Mode Metal-Semiconductor Field Effect Transistors Using Homoepitaxial Diamonds”, Applied Physics Letters, vol.65, pp.1563-1565, 1994 [69] H. Kawarada, “Hydrogen-Terminated Diamond Surfaces and Interfaces”, Surface Science Reports, vol.26, pp.205-259, 1996 [70] H. Ishizaka, M. Tachiki, K. Song, H. Umezawa, H. Kawarada, “Cryogenic Operation of Surface-Channel Diamond Field-Effect Transistors”, Diamond & Related Materials, vol.12, pp.1800-1803, 2003 [71] H. Noda, A. Hokazono, H. Kawarada, “Device Modeling of High Performance Diamond MESFETs Using P-Type Surface Semiconductive Layers”, Diamond & Related Materials, vol.6, pp.865-868, 1997 [72] C. Verona, W. Ciccognani, S. Colangeli, F. D. Pietrantonio, E. Giovine, E. Limiti, M. Marinelli, G. Verona-Rinati, "Gate–Source Distance Scaling Effects in H-Terminated Diamond MESFETs", IEEE Transactions on Elelectron Devices, vol.62, pp.1150-1156, 2015 [73] H. J. Looi, L. Y. S. Pang, Y. Wang, M. D. Whitfield, R. B. Jackman, “Enhancement Mode Metal-SemiconductorField Effect Transistors from Thin-Film Polycrystalline Diamond”, IEEE Electron Device Letters, vol.19, 79 pp.112-114, 1998 [74] H. Umezawa, K. Tsugawa, S. Yamanaka, D. Takeuchi, H. Okushi, H. Kawarada, ” High-Performance Diamond Metal-Semiconductor Field-Effect Transistor with 1 μm Gate Length”, Japanese Journal of Applied Physics, vol. 38, pp.1222–1224, 1999 [75] A. Aleksov, A. Denisenko, U. Spitzberg, T. Jenkins, W. Ebert, E. Kohn, "RF Performance of Surface Channel Diamond FETs With Sub-Micron Gate Length", Diamond & Related Materials, vol.11, pp.382–386, 2002 [76] Oliver A Williams, Richard B Jackman, "Surface Conductivity on Hydrogen Terminated Diamond", Semiconductor Science and Technology, Vol.18, pp.34-40, 2003 [77] P. Calvani, A. Corsaro, F. Sinisi, M.C. Rossi, G. Conte, S. Carta, E. Limiti, “Microwave Performance of Surface Channel Diamond MESFETs”, IEEE Nanotechnology Materials and Devices Conference, pp.200-204, 2009 [78] Y. Zhang, L. J. Wang, J. Huang, K. Tang, F. Zhang, Q. Fang, Q. Zeng, R. Xu, J. Zhang, J. Min, Y. Xia, "The Electrical Properties of The Diamond Field Effect Transistor", Asia Communications and Photonics conference and Exhibition, pp.1-6, 2009 [79] H. Taniuchi, H. Umezawa, T. Arima, M. Tachiki, H. Kawarada, “High-Frequency Performance of Diamond Field-Effect Transistor”, IEEE Electron Device Letters, vol.22, pp.390-392, 2001 [80] P. Calvani, A. Corsaro, M. Girolami, F. Sinisi, D.M. Trucchi, M.C. Rossi, G. Conte, S. Carta, E. Giovine, S. Lavanga, E. Limiti, V. Ralchenko, “DC and RF Performance of Surface Channel MESFETs on H-Terminated Polycrystalline Diamond”, Diamond & Related Materials, vol.18, pp.786– 80 788, 2009 [81] B. Pasciuto, W. Ciccognani, E. Limiti, P. Calvani, M. C. Rossi, G. Conte, “Modeling of Metal-Semiconductor Field-Effect-Transistor on H-Terminated Polycrystalline Diamond”, International Conference on Ultimate Integration of Silicon, pp.261-264, 2009 [82] P. Calvani, G. Conte, D. Dominijanni, E. Giovine, B. Pasciuto, E. Limiti, “Hydrogen Terminated Diamond MESFETs: New Technology for RF Power Applications”, European Microwave Integrated Circuits Conference, pp.122-125, 2010 [83] D. A. J. Moran, D. A. MacLaren, S. Porro, H. McLelland, P. John, J. I. B. Wilson, "Processing of 50 nm Gate-Length Hydrogen Terminated Diamond FETs for High Frequency and High Power Applications", Microelectronic Engineering, vol.88, pp.2691–2693, 2011 [84] D. A. J. Moran, S. A. O. Russell, S. Sharabi, A. Tallaire, "High Frequency Hydrogen-Terminated Diamond Field Effect Transistor Technology", IEEE International Conference on Nanotechnology, pp.1-5, 2012 [85] V. Camarchia, F. Cappelluti, G. Ghione, E. Limiti, D. A. J. Moran, M. Pirola, “An Overview on Recent Developments in RF and Microwave Power H-Terminated Diamond MESFET Technology”, International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits, pp.1-6, 2014 [86] K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D. J. Twitchen, G. A. Scarsbrook, S. E. Coe, ”Diamond FET Using High-Quality Polycrystalline Diamond With fT of 45 GHz and fmax of 120 GHz”, IEEE Eelctron Device Letters, vol.27, pp.570-572, 2006 [87] A. Hokazono, T. Ishikura, K. Nakamura, S. Yamashita, H. Kawarada, 81 “Enhancement/Depletion MESFETs of Diamond and Their Logic Circuits”, Diamond & Related Materials, vol.6, pp.339-343, 1997 [88] K. G. Crawford, “Enhanced Surface Transfer Doping of Diamond by V2O5 With Improved Thermal Stability,” Applied Physics Letters, vol.108, pp. 1–4, 2016 [89] C. Verona, W. Ciccognani, S. Colangeli, E. Limiti, M. Marinelli, G. Verona-Rinati, D. Cannatà, M. Benetti, F. D. Pietrantonio, “V2O5 MISFETs on H-Terminated Diamond”, IEEE Transactions on Electron Devices, vol.63, pp.4647-4653, 2016 [90] M. Tordjman, C. Saguy, A. Bolker, R. Kalish, “Superior Surface Transfer Doping of Diamond With MoO3”, Advanced Materials Interfaces, vol.1, pp.1-6, 2014 [91] K. Hiramal, H. Takayanagil, S. Yamauchil, Y. Jingul, H. Umezawa, H. Kawaradal, “Diamond MISFETs Fabricated on High Quality Polycrystalline CVD Diamond”, International Symposium on Power Semiconductor Devices & ICs, pp.269-272, 2007 [92] M. Syamsul, Y. Kitabayashi, T. Kudo, D. Matsumura, H. Kawarada, “High Voltage Stress Induced in Transparent Polycrystalline Diamond Field-Effect Transistor and Enhanced Endurance Using Thick Al2O3 Passivation Layer”, IEEE Electron Device Letters, vol.38, pp.607-610, 2017 [93] K. Hirama, T. Koshiba, K. Yohara, H. Takayanagi, S. Yamauchi, M. Satoh, H. Kawarada, "RF diamond MISFETs Using Surface Accumulation Layer", International Symposium on Power Semiconductor Devices & IC's, pp.1-4, 2006 [94] H. Kawarada, "High-Current Metal Oxide Semiconductor Field-Effect 82 Transistors on H-Terminated Diamond Surfaces and Their High-Frequency Operation", Japanese Journal of Applied Physics, vol.51, pp.1-6, 2012 [95] S. A. O. Russell, S. Sharabi, A. Tallaire, D. A. J. Moran, "Hydrogen-Terminated Diamond Field-Effect Transistors With Cutoff Frequency of 53 GHz", IEEE Electron Device Letters, vol.33, pp.1471-1473, 2012 [96] H. Matsudaira, S. Miyamoto, H. Ishizaka, H. Umezawa, H. Kawarada, “Over 20-GHz Cutoff Frequency Submicrometer-Gate Diamond MISFETs”, IEEE Electron Device Letters, VOL.25, pp.480-482, 2004 [97] K. Hirama, K. Tsuge, S. Sato, T. Tsuno, Y. Jingu, S. Yamauchi, H. Kawarada, “High-Performance P-Channel Diamond Metal–Oxide– Semiconductor Field-Effect Transistors on H-Terminated (111) Surface”, Applied Physics Express, vol.3, pp.1-3, 2010 [98] T. Iwasaki, J. Yaita, H. Kato, T. Makino, M. Ogura, D. Takeuchi, H. Okushi, S. Yamasaki, M. Hatano, “600 V Diamond Junction Field-Effect Transistors Operated at 200 °C”, IEEE Electron Device Letters, vol.35, pp.241-243, 2014 [99] T. Suwa, T. Iwasaki, K. Sato, H. Kato, T. Makino, M. Ogura, D. Takeuchi, S. Yamasaki, M.Hatano, “Normally-Off Diamond Junction Field-Effect Transistors With Submicrometer Channel”, IEEE Electron Device Letters, vol.37, pp.209-211, 2016 [100] T. Iwasaki, Y. Hoshino, K. Tsuzuki, H. Kato, T. Makino, M. Ogura, D. Takeuchi, T. Matsumoto, H. Okushi, S. Yamasaki, M. Hatano, ”Diamond Semiconductor JFETs by Selectively Grown n+-Diamond Side Gates for Next Generation Power Devices”, International Electron Devices Meeting, 83 pp.751-754, 2012 [101] Y. Hoshino, H. Kato, T. Makino, M. Ogura, T. Iwasaki, M. Hatano, S. Yamasaki, ” Electrical Properties of Lateral p–n Junction Diodes Fabricated by Selective Growth of n+ Diamond”, Physica Status Solidi (a), vol.209, pp.1761–1764, 2012 [102] T. Iwasaki, Y. Hoshino, K. Tsuzuki, H. Kato, T. Makino, M. Ogura, D. Takeuchi, H. Okushi, S. Yamasaki, M. Hatano, “High-Temperature Operation of Diamond Junction Field-Effect Transistors With Lateral p-n Junctions”, IEEE Electron Device Letters, vol.34, pp.1175-1177, 2013 [103] T. Iwasaki, H. Kato, T. Makino, M. Ogura, D. Takeuchi, S. Y., M. Hatano, ” High-Temperature Bipolar-Mode Operation of Normally-Off Diamond JFET”, Electron Devices Society, vol.5, pp.95-99, 2017 [104] T. Iwasaki, H. Kato, J. Yaita, T. Makino, M. Ogura, D. Takeuchi, H. Okushi, S. Yamasaki, M. Hatano, “Current Enhancement by Conductivity Modulation in Diamond JFETs for Next Generation Low-Loss Power Devices”, International Symposium on Power Semiconductor Devices & IC's, pp.77-80, 2015 [105] J. J. Wang, Z. Z. He, C. Yu, X. B. Song, H. X. Wang, F. Lin, Z. H. Feng, "Comparison of Field-Effect Transistors on Polycrystalline and Single-Crystal Diamonds", Diamond & Related Materials, vol.70, pp.114– 117, 2016 [106] K. Hirama, H. Takayanagi, S. Yamauchi, J. H. Yang, H. Kawarada, H. Umezawa, "Spontaneous Polarization Model for Surface Orientation Dependence of Diamond Hole Accumulation Layer and Its Transistor Performance", Applied Physics Letters, vol.92, pp.1-3, 2008 84 [107] E. O. Johnson, “Physical Limitations on Frequency and Power Parameters of Transistors”, RCA Electronic Components and Devices Somerville, pp.27-34, 1965 [108] R. W. Keyes, “Figure of Merit for Semiconductors for High-Speed Switches”, Proc. IEEE, vol.60, pp.225, 1972 [109] B. J. Baliga, “Semiconductors for High-Voltage, Vertical Channel FET’s”, Journal of Applied Physics, vol.53, pp.1759-1764, 1982 [110] R. F. Davis, J. W. Palmoue, J. A. Edmond, "A Review of The Status of Diamond and Silicon Carbide Devices for High- Power, High-Temperature and-Frequency Applications", International Technical Digest on Electron Devices, pp.785-788,1990 [111] C. J. H. Wort, R. S. Balmer, “Diamond as An Electronic Material”, Materials Today, vol.11, pp.22-28, 2008
|