跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 19:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江忠祐
研究生(外文):Chung-Yu Chiang
論文名稱:陰極表面鍍銀對鋅空氣電池充放電效能之影響
論文名稱(外文):Effect of Ag-deposited cathodes on the charging-discharging performance of zinc air batteries
指導教授:林景崎
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:143
中文關鍵詞:三極式電沉積添加劑陰極鋅空氣電池
外文關鍵詞:Three-Electrode ElectrodepositionAdditivesAir cathodeZinc-air battery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要著重於在鋅-空氣電池陰極表面鍍銀,透過添加有機酸,來改善其表面形貌,觀察對鋅-空氣電池充、放電效能之影響。實驗分為三個部分,第一部分是陰極的製備,第二部分是對陰極進行電化學分析,第三部分是進行全電池充、放電測試。
  第一部分是在陰極的製備上,使用三極式電沉積法,在不鏽鋼網上,電鍍出能加速氧氣反應的觸媒銀,透過添加酒石酸、檸檬酸,來改善無添加劑時的顆粒零散形貌,目的是使銀能夠包覆於不銹鋼網,提升銀的沉積密度。在陰極鑑定方面,利用掃描式電子顯微鏡與X光繞射儀,來鑑定材料基本物理特性。從SEM形貌分析結果來看,添加檸檬酸之鍍銀陰極,銀的形貌細緻且包覆性最完整。第二部分是將不同添加劑所製備成的陰極,透過循環伏安法(CV)與電化學阻抗頻譜分析(EIS)來進行電化學分析。
從循環伏安法之結果顯示,本實驗所製備的陰極具備OER與ORR的活性,表示具有二次電池之特性,接著使用電化學阻抗頻譜分析(EIS),可以發現添加檸檬酸之鍍銀陰極,在電荷轉移電阻(Rct)中為最小的值,證明添加檸檬酸的陰極具有良好的電催化活性。第三部分是鋅空氣電池全電池測試,發現添加檸檬酸之鍍銀陰極在庫倫效率的表現上,經過250次循環後,仍然可以保持在98%的效率,且在電壓、能量效率上有最佳的表現。
This study focuses on improving air cathode efficiency with Ag-deposited metal mesh for rechargeable Zn-air batteries. By adding organic acids, its surface morphology became smooth and as zinc air batteries’ cathode, charge/discharge performance was highly enhanced as well. The thesis contains three parts. The first part is the preparation of the air cathode. The second part is the electrochemical analysis of the air cathode. The third part is the full-cell charge/discharge measurements.
  In the first section, the silver nanoclusters were electrodeposited on the SS mesh by using three-electrode electrodeposition equipment. By adding tartaric acid or citric acid, the silver particles seemed to cover extremely well on the metal mash with higher silver deposition density. On the other hand, the scattered morphology was seen without any additives. The physical properties of the materials were characterized by Scanning Electron Microscopy (SEM) and X-ray powder diffraction (XRD). From the SEM morphology analysis results, the air cathode with the citric acid additive has the finest morphology and the most complete coating. The second part is the materials’ electrochemical analyses via Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The results of Cyclic Voltammetry (CV) showed that air cathode had both OER and ORR activity. With Electrochemical Impedance Spectroscopy (EIS), it was found that the air cathode of addition citric acid has the minimum values in the charge transfer resistance (Rct), which is a critical factor for enhancing batteries’ performance. The third part is the Zinc-air battery full-cell test. The air electrode with citric acid assisted exhibited excellent cycling property with 98% Coulombic efficiency even after 250 cycles.
目錄
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 XI
圖目錄 XII
第一章、序論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 2
第二章、文獻回顧 4
2-1 電池簡介 4
2-1-1 鋅-銀電池 4
2-1-2 鋰-硫電池 5
2-1-3 鋅-空氣電池 6
2-2 鋅空氣電池的發展 7
2-2-1 一次性鋅-空氣電池 10
2-2-2 二次性鋅-空氣電池 11
2-3 鋅空氣電池原理 12
2-3-1 陽極反應 12
2-3-2 陰極反應 13
2-3-3 全反應 15
2-4 陰極的結構與發展 16
2-4-1 氣體擴散結構層與集電網 16
2-4-1-1 碳材 17
2-4-1-2 集電網 18
2-4-2 氧氣還原催化層 18
2-4-2-1 二氧化錳 20
2-4-2-2 銀 20
2-5 銀電鍍受到有機酸添加劑之影響 21
2-5-1 酒石酸 21
2-5-2 檸檬酸 22
第三章、實驗方法與步驟 23
3-1 實驗規劃 23
3-2 實驗材料與藥品 23
3-3 實驗儀器設備 24
3-3-1 實驗設備 24
3-3-2 分析儀器 25
3-4 實驗流程 25
3-4-1 不銹鋼網電鍍銀製作陰極 25
3-4-1-1 不含添加劑 26
3-4-1-2 添加不同濃度酒石酸 27
3-4-1-3 添加不同濃度檸檬酸 27
3-4-2 陰極之電化學測試 27
3-4-2-1 鍍銀之循環伏安法分析 28
3-4-2-2 空氣電極之循環伏安法分析 28
3-4-2-3 線性掃描伏安法分析 29
3-4-2-4 電化學阻抗頻譜分析 29
3-4-3 組裝全電池充放電測試 30
3-5 材料分析 31
3-5-1 場發射掃描式電子顯微鏡 31
3-5-2 X光繞射分析儀分析 31
3-5-3 循環伏安法 32
3-5-4 電化學阻抗譜分析 32
3-5-5 全電池充放電測試 33
第四章、結果 34
4-1 不銹鋼網在不同條件下鍍銀所得陰極之差異分析 34
4-1-1 陰極SEM形貌分析 35
4-1-1-1 無添加劑之鍍銀陰極 35
4-1-1-2 添加酒石酸之鍍銀陰極 35
4-1-1-3 添加檸檬酸之鍍銀陰極 36
4-1-2 陰極之充、放電性能比較 37
4-1-2-1 無添加劑之鍍銀陰極 37
4-1-2-2 添加酒石酸之鍍銀陰極 38
4-1-2-3 添加檸檬酸之鍍銀陰極 40
4-1-3 陰極之XRD晶體結構分析 42
4-1-3-1 無添加劑之鍍銀陰極 42
4-1-3-2 添加酒石酸之鍍銀陰極 42
4-1-3-3 添加檸檬酸之鍍銀陰極 43
4-2 陰極鍍銀之循環伏安法分析 43
4-2-1 無添加劑之鍍銀陰極 43
4-2-2 添加酒石酸之鍍銀陰極 44
4-2-3 添加檸檬酸之鍍銀陰極 44

4-3 陰極之循環伏安法分析 45
4-3-1 無添加劑之鍍銀陰極 45
4-3-2 添加酒石酸之鍍銀陰極 46
4-3-3 添加檸檬酸之鍍銀陰極 46
4-4 陰極之線性掃描伏安法分析 47
4-4-1 無添加劑之鍍銀陰極 47
4-4-2 添加酒石酸之鍍銀陰極 48
4-4-3 添加檸檬酸之鍍銀陰極 48
4-5 陰極之電化學阻抗頻譜分析 49
4-5-1 無添加劑之鍍銀陰極 50
4-5-2 添加酒石酸之鍍銀陰極 50
4-5-3 添加檸檬酸之鍍銀陰極 50
4-6 全電池循環充放電分析 51
4-6-1 無添加劑製備空氣電極之循環充放電分析 51
4-6-2 添加酒石酸製備空氣電極之循環充放電分析 52
4-6-3 添加檸檬酸製備空氣電極之循環充放電分析 52
第五章、討論 54
5-1 影響陰極充、放電性能差異之原因 54
5-1-1 酒石酸與檸檬酸之效應 54
5-1-1-1 SEM表面形貌分析 54
5-1-1-2 充、放電性能 55
5-1-1-3 XRD 57
5-1-1-4 鍍銀之循環伏安法 57
5-1-1-5 空氣電極之循環伏安法 59
5-1-1-6 LSV線性掃描伏安法 60
5-1-1-7 電化學阻抗頻譜分析 60
5-2 影響全電池循環充放電性能之原因 61
5-2-1 無添加劑製備空氣電極 61
5-2-2 添加酒石酸製備空氣電極 62
5-2-3 添加檸檬酸製備空氣電極 62
5-3 與鋅-銀一次電池性能比較 63
5-4 與鋰-硫二次電池性能比較 64
5-5 與商用陰極觸媒Pt/C性能比較 65
第六章、結論 67
第七章、未來展望 70
參考文獻 71
[1] 陳振源,「燃料電池」,科學發展391 期,2005
[2] 李世興,「電池活用手冊」,全華,1999
[3] http://highscope.ch.ntu.edu.tw/wordpress/?p=5110

[4] Dilek Ozgit, Pritesh Hiralal, Gehan A.J. Amaratunga, “Improving Performance and Cyclability of Zinc−Silver Oxide Batteries by Using Graphene as a Two Dimensional Conductive Additive”, ACS Appl. Mater. Interfaces,2014, 6, 20752−20757.
[5] Ming-Yuan Yeh, 「HALE UAV儲能系統-鋰硫電池發展趨勢探討」, Remote Sensing Satellite Technology Workshop, 2016.

[6] Scott Evers, Taeeun Yim, Linda F. Nazar, “Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li−S Battery”, J. Phys. Chem. C 2012, 116, 19653−19658.

[7] 洪傳獻,「鋅空氣電池與其他電池在電動車應用之比較」,鋅空氣電池技術及其在電動車應用研討會,台灣台北,民國88年
[8] 萬其超,「電化學之原理與運用」,徐氏基金會,台灣台北,民國85年
[9] 黃鎮江,「燃料電池」,全華科技,台北,2003
[10] C. L. Mantell, “Batteries and Energy Systems”, McGraw-Hill, New York, 1983.

[11] Yanguang Li, Ming Gong, Yongye Liang, Ju Feng, Ji-Eun Kim, Hailiang Wang, Guosong Hong1, Bo Zhang, Hongjie Dai, “Advanced zinc-air batteries based on high-performance hybrid electrocatalysts”, NATURE COMMUNICATIONS, 2013.

[12] Xien Liua, Minjoon Park, Min Gyu Kim, Shiva Gupta , Xiaojuan Wang, Gang Wu, Jaephil Choa, “High-performance non-spinel cobalt–manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc–air batteries”, Nano Energy, 2015.
[13] 曹玉佳,「鋅-空氣燃料電池陰極之奈米化結構研發」,國立中正大學碩士論文,2007
[14] 唐宏怡,「空氣電極與鋅電極研發」,鋅空氣電池技術及其在電動車的應用研討會,1999
[15] 吉澤四郎,「最新電池工學」,復漢出版社,1981
[16] S. MÜELLER, F. HOLZER, O. HAAS, “Optimized zinc electrode for the rechargeable Zinc-air battery”, JOURNAL OF APPLIED ELECTROCHEMISTRY,1998,28 895-898.

[17] Frank R., McLarnon, Elton J. Cairns, “The Secondary Alkaline Zinc Electrode”, J. Electrochem. Soc., Vol. 138, No. 2, February 1991.

[18] T. P. Dirkse, “The Behavior of the Zinc Electrode in Alkaline Solutions”,
J. Electrochem. Soc. 1981,128, 1412.

[19] W. G. Sunu, D. N. Bennion,“ Transient and Failure Analyses of the Porous Zinc Electrode”, J. Electrochem. Soc. ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, September 1980.

[20] E. Deiss, F. Holzer, O. Haas, “Modeling of an electrically rechargeable alkaline Zn-air battery”, Electrochimica Acta. 2002,47, 3995-4010.

[21] M.L. Calegaro, F.H.B. Lima, E.A. Ticianelli, “Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions”, Journal of Power Sources .2006, 158,735–739.

[22] D.P. Gregory, “Metal-Air Batteries”, Mills & Boon, London, 1972.

[23] Pucheng Pei, Keliang Wang, Ze Ma, “Technologies for extending zinc–air battery’s cyclelife: A review”, Applied Energy, 2014,128, 315–324.

[24] Yanguang Li, Hongjie Dai, “Recent advances in zinc–air batteries”, Chem. Soc. Rev., 2014, 43, 5257.

[25] 辛毓真,「鑭鈣銅氧相關系列催化劑在鋅-空氣電池中還原反應之研究」,國立交通大學碩士論文,2006

[26] “http://me.dyu.edu.tw/lab/H457/HOMEWORK/fuelcell/Alkaline.”

[27] G. Q. Zhang, X. G. Zhang, “MnO2/MCMB Electrocatalyst for All Solid-State Alkaline Zinc-Air Cells”, Electrochim. Acta, 2004,49, 873.

[28] C. A. Vincent, B. Scrosati, M.Lazzari, F. Bonino, “Modern Battery”, Thomso Litho Ltd, East Kilbrid, Scotland, 1984.

[29] Y. Y. Shao, J. Liu, Y. Wang, Y. H. Lin, “Novel Catalyst Support Material for PEM Fuel Cell: Current Status and Future Prospects”, J. Mater. Chem., 2009, 19, 46.

[30] F. Zhang, T. Saito, S. Cheng, M. A. Hickner, B. E. Logan, “Microbial Fuel Cell Cathodes With Poly(dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors”, Environ. Sci. Technol., 2010,44, 1490.

[31] D. Chartouni, N. Kuriyama, T. Kiyobayashi, J. Chen, “Air–Metal Hydride Secondary Battery with Long Cycle Life”, J. Alloys Compd, 2002, 330, 766.

[32] C. C. Yang, “ Preparation and Characterization of Electrochemical Properties of Air Cathode Electrode”, Int. J. Hydrogen Energ., 2004, 29, 135.

[33] Dong Un Lee, Ja-Yeon Choi, Kun Feng, Hey Woong Park, and Zhongwei Chen,“Advanced Extremely Durable 3D Bifunctional Air Electrodes for Rechargeable Zinc-Air Batteries”, Adv. Energy Mater. 2013.

[34] Jin-Bum Park, Xiangyi Luo, Jun Lu, Chang Dae Shin, Chong Seung Yoon, Khalil Amine, Yang-Kook Sun, “Improvement of Electrochemical Properties of Lithium−Oxygen Batteries Using a Silver Electrode”, J. Phys. Chem. 2015, 119, 15036 −15040.

[35] T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalkar, M. Srinivasan, “Silver Nanoparticle-Decorated Carbon Nanotubes as Bifunctional Gas-Diffusion Electrodes for Zinc–Air Batteries”, J. Power Sources,2010,195, 4350.

[36] J. Yang, J. J. Xu, “Nanostructured Amorphous Manganese Oxide Cryogel as                 a High-Rate Lithium Intercalation Host”, Electrochem. Commun., 2003, 5,306.

[37] Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li, Z. Chen, “Manganese Dioxide Nanotube and Nitrogen-Doped Carbon Nanotube Based Composite Bifunctional Catalyst for Rechargeable Zinc-Air Battery”, Electrochim. Acta, 2012, 69, 295.

[38] Y. S. Ding, X. F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V. M. B. Crisostomo, S. L. Suib, M. Aindow, “Synthesis and Catalytic Activity of Cryptomelane-Type Manganese Dioxide Nanomaterials Produced by a Novel Solvent-Free Method”, Chem. Mater., 2005, 17, 5382.

[39] F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen, “MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media”, Chem. Mater., 2010, 22, 898.

[40] Y. Yang, Q. Sun, Y. S. Li, H. Li, Z. W. Fu, “A CoOx/Carbon Double-Layer Thin Film Air Eectrode for Nonaqueous Li-Air Batteries”, J. Power Sources, 2013, 223, 312.

[41] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, “Co3O4 Nanocrystal on Graphene as a Synergistic Catalyst for Reduction Reaction”, Nat. Mater., 2011, 10, 780.

[42] M. Yuasa, M. Nishida, T. Kida, N. Yamazoe, K. Shimanoe, “Bi-Functional Oxygen Electrodes Using LaMnO3/LaNiO3 for Rechargeable Metal-Air Batteries”, J. Electrochem. Soc., 2011, 158, A605.

[43] N. A. Merino, B. P. Barbero, P. Grange, L. E. Cadús, “La1−xCaxCoO3 Perovskite-Type Oxides: Preparation, Characterisation, Stability, and Catalytic Potentiality for the Total Oxidation of Propane”, J. Catal., 2005, 231, 232.

[44] Pathaka, J. Kuebler, A. Payzantc, N. Orlovskaya, “Mechanical Behavior and Electrical Conductivity of La1−xCaxCoO3 (x = 0, 0.2, 0.4, 0.55) Perovskites”, J. Power Sources, 2010, 195, 3612.

[45] M. Maja, C. Orecchia, M. Strano, P. Tosco, M. Vanni, “Effect of Structure of the Electrical Performance of Gas Diffusion Electrodes for Metal Air Batteries”, Electrochim. Acta,2000, 46, 423.

[46] Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li, Z. Chen, “Manganese Dioxide Nanotube and Nitrogen-Doped Carbon Nanotube Based Composite Bifunctional Catalyst for Rechargeable Zinc-Air Battery”, Electrochim. Acta, 2012, 69, 295.

[47] G. Du, X. Liu, Y. Zong, T. S. A. Hor, A. Yucand, Z. Liu, “Co3O4 Nanoparticle - Modified MnO2 Nanotube Bifunctional Oxygen Cathode Catalysts for Rechargeable Bifunctional Oxygen Cathode Catalysts for Rechargeable Zinc–Air Batteries”, Nanoscale, 2013, 5, 4657.

[48] 李奕成,「金屬空氣電池之技術與應用現況」,工業材料雜誌347期,2015

[49] “http://www. Eosenergystorage.com/”

[50] “http://www.phinergy.com/”

[51] Guojun Du, Xiaogang Liu, Yun Zong, T. S. Andy Hor ,Aishui Yuc , Zhaolin Liu,“Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc–air batteries”, Nanoscale, 2013, 5, 4657.

[52] Moni Prabu, Prakash Ramakrishnan, Sangaraju Shanmugam,“CoMn2O4 nanoparticles anchored on nitrogen-doped graphene nanosheets as bifunctional electrocatalyst for rechargeable zinc–air battery”, Electrochemistry Communications , 2014,41, 59–63.
[53] Zhu Chen, Aiping Yu, Drew Higgins, Hui Li, Haijiang Wang, Zhongwei Chen, “Highly Active and Durable Core−Corona Structured Bifunctional Catalyst for Rechargeable Metal−Air Battery Application”, Nano Lett. 2012, 12, 1946−1952.

[54] Kyu-Nam Jung, Jong-Hyuk Jung, Won Bin Im, Sukeun Yoon, Kyung-Hee Shin, Jong-Won Lee, “Doped Lanthanum Nickelates with a Layered Perovskite Structure as Bifunctional Cathode Catalysts for Rechargeable Metal−Air Batteries”, ACS Appl. Mater. Interfaces, 2013, 5, 9902−9907.

[55] Y. G. Li, M. Gong, Y. Y. Liang, J. Feng, J. E. Kim, H. L. Wang, G. S. Hong, B. Zhang, H. J. Dai, “Advanced Zinc Air Batteries Based on High Performance Hybrid Electrocatalysts”, Nat. Commun.2013,4, 1805.

[56] J.E. Post, “Maganese Oxide Minerals: Crystal Structure and Economic and Environmental Significance ”,Proc.Natl.Acad.Sci.U.S.A.,1999,96.3447.

[57] J.P.Bernet,“ Electrochemical Behavior of Metallic Oxides” , J. Power Sources,1979,4,183.

[58] L. Mao, “Electrochemical Characterization of Catalytic Activities of Maganese to Oxygen Reduction in Alkaline Aqueous Solution”, J. Electrochem. Soc., 2002, 149, A504.
[59] P. C. Foller, Improved slurry zinc-air systems as batteries for urban vehicle propulsion, J. Appl. Electrochem., 1986, 16, 527.

[60] R. Thacker, “On the use of palladium-catalyzed cathodes in a secondary zinc-air cell”, Energy Conversion,1972,12, 17–20.

[61] L. Maiche, French Pat., 127069, 1878.

[62] N. Wagner, M. Schulze, E. Gülzow, “Long term investigations of silver cathodes for alkaline fuel cells”, Journal of Power Sources ,2004,127, 264–272.

[63] C. Coutanceau, L. Demarconnay, C. Lamy and J. M. Leger, Development of electrocatalysts for solid alkaline fuel cell (SAFC), J. Power Sources, 2006, 156, 14.

[64] H. Meng and P. K. Shen, Novel Pt-free catalyst for oxygen electroreduction
, Electrochem. Commun., 2006, 8, 588.

[65] M. Chatenet, L. Genies-Bultel, M. Aurousseau, R. Durand and F. Andolfatto, “Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide – comparison with platinum,” J. Appl. Electrochem., 2002, 32, 1131.

[66] J. S. Spendelow and A. Wieckowski, “Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media”, Phys. Chem. Chem. Phys., 2007, 9, 2654.

[67] G.M. Zarkadas , A. Stergiou , G. Papanastasiou, “Influence of tartaric acid on the electrodeposition of silver from binary water + dioxane AgNO3 solutions”, Journal of Applied Electrochemistry ,2004,35, 607–615.

[68] G.M. Zarkadas, A. Stergiou , G. Papanastasiou , “Influence of citric acid on the silver electrodeposition from aqueous AgNO3 solutions”, Electrochimica Acta ,2005,50, 5022–5031.

[69] “https://www.materialsnet.com.tw/DocView.aspx?id=23966"
[70] Xuemei Li, Nengneng Xu, Haoran Li, Min Wang, Lei Zhang, Jinli Qiao, “3D hollow sphere Co3O4/MnO2-CNTs: Its high-performance bi-functional cathode catalysis and application in rechargeable zinc-air battery”, Green Energy and Environment,2017.

[71] Alain Robina, Gilbert Silvab, Jorge Luiz Rosaa, “Corrosion Behavior of HA-316L SS Biocomposites in Aqueous Solutions”, Materials Research. 2013,16(6),1254-1259.

[72] “https://www.fuelcellsetc.com/store/DS/SGL-GDL_10.pdf”
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊