|
[1] D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Analytical Chemistry, vol. 74, pp. 2623-2636, Jun 15 2002. [2] P. A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, "Micro total analysis systems. 2. Analytical standard operations and applications," Analytical Chemistry, vol. 74, pp. 2637-2652, Jun 15 2002. [3] C. A. Baker, C. T. Duong, A. Grimley, and M. G. Roper, "Recent advances in microfluidic detection systems," Bioanalysis, vol. 1, pp. 967-975, Aug 2009. [4] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse, "Electrospray Ionization for Mass-Spectrometry of Large Biomolecules," Science, vol. 246, pp. 64-71, Oct 6 1989. [5] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse, "Electrospray Ionization-Principles and Practice," Mass Spectrometry Reviews, vol. 9, pp. 37-70, Jan 1990. [6] R. S. Ramsey and J. M. Ramsey, "Generating electrospray from microchip devices using electroosmotic pumping," Analytical Chemistry, vol. 69, pp. 1174-1178, Mar 15 1997. [7] J. Ji, L. Nie, L. Qiao, Y. X. Li, L. P. Guo, B. H. Liu, et al., "Proteolysis in microfluidic droplets: an approach to interface protein separation and peptide mass spectrometry," Lab on a Chip, vol. 12, pp. 2625-2629, 2012. [8] T. Rob, P. K. Gill, D. Golemi-Kotra, and D. J. Wilson, "An electrospray ms-coupled microfluidic device for sub-second hydrogen/deuterium exchange pulse-labelling reveals allosteric effects in enzyme inhibition," Lab on a Chip, vol. 13, pp. 2528-2532, 2013. [9] L. Mats, G. T. T. Gibson, and R. D. Oleschuk, "Plastic LC/MS microchip with an embedded microstructured fibre having the dual role of a frit and a nanoelectrospray emitter," Microfluidics and Nanofluidics, vol. 16, pp. 73-81, Jan 2014. [10] N. H. Bings, C. Wang, C. D. Skinner, C. L. Colyer, P. Thibault, and D. J. Harrison, "Microfluidic Devices Connected to Fused-Silica Capillaries with Minimal Dead Volume," Analytical Chemistry, vol. 71, pp. 3292-3296, 1999/08/01 1999. [11] S. Fritzsche, S. Ohla, P. Glaser, D. S. Giera, M. Sickert, C. Schneider, et al., "Asymmetric Organocatalysis and Analysis on a Single Microfluidic Nanospray Chip," Angewandte Chemie-International Edition, vol. 50, pp. 9467-9470, 2011. [12] P. Hoffmann, U. Hausig, P. Schulze, and D. Belder, "Microfluidic glass chips with an integrated nanospray emitter for coupling to a mass spectrometer," Angewandte Chemie-International Edition, vol. 46, pp. 4913-4916, 2007. [13] J. S. Mellors, W. A. Black, A. G. Chambers, J. A. Starkey, N. A. Lacher, and J. M. Ramsey, "Hybrid Capillary/Microfluidic System for Comprehensive Online Liquid Chromatography-Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry," Analytical Chemistry, vol. 85, pp. 4100-4106, Apr 16 2013. [14] J. S. Mellors, V. Gorbounov, R. S. Ramsey, and J. M. Ramsey, "Fully integrated glass microfluidic device for performing high-efficiency capillary electrophoresis and electrospray ionization mass spectrometry," Analytical Chemistry, vol. 80, pp. 6881-6887, Sep 15 2008. [15] X. Qian, J. Xu, C. L. Yu, Y. Chen, Q. Yu, K. Ni, et al., "A Reliable and Simple Method for Fabricating a Poly(Dimethylsiloxane) Electrospray Ionization Chip with a Corner-Integrated Emitter," Sensors, vol. 15, pp. 8931-8944, Apr 2015. [16] N. Nordman, T. Sikanen, S. Aura, S. Tuomikoski, K. Vuorensola, T. Kotiaho, et al., "Feasibility of SU-8-based capillary electrophoresis-electrospray ionization mass spectrometry microfluidic chips for the analysis of human cell lysates," Electrophoresis, vol. 31, pp. 3745-3753, Nov 2010. [17] N. Nordman, T. Sikanen, M. E. Moilanen, S. Aura, T. Kotiaho, S. Franssila, et al., "Rapid and sensitive drug metabolism studies by SU-8 microchip capillary electrophoresis-electrospray ionization mass spectrometry," Journal of Chromatography A, vol. 1218, pp. 739-745, Feb 4 2011. [18] M. Schilling, W. Nigge, A. Rudzinski, A. Neyer, and R. Hergenroder, "A new on-chip ESI nozzle for coupling of MS with microfluidic devices," Lab on a Chip, vol. 4, pp. 220-224, 2004. [19] X. F. Sun, R. T. Kelly, K. Q. Tang, and R. D. Smith, "Ultrasensitive nanoelectrospray ionization-mass spectrometry using poly(dimethylsiloxane) microchips with monolithically integrated emitters," Analyst, vol. 135, pp. 2296-2302, 2010. [20] X. F. Sun, R. T. Kelly, K. Q. Tang, and R. D. Smith, "Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry," Analytical Chemistry, vol. 83, pp. 5797-5803, Jul 15 2011. [21] Y. X. Wang, J. W. Cooper, C. S. Lee, and D. L. DeVoe, "Efficient electrospray ionization from polymer microchannels using integrated hydrophobic membranes," Lab on a Chip, vol. 4, pp. 363-367, 2004. [22] Q. F. Xue, F. Foret, Y. M. Dunayevskiy, P. M. Zavracky, N. E. McGruer, and B. L. Karger, "Multichannel microchip electrospray mass spectrometry," Analytical Chemistry, vol. 69, pp. 426-430, Feb 1 1997. [23] N. G. Batz, J. S. Mellors, J. P. Alarie, and J. M. Ramsey, "Chemical Vapor Deposition of Aminopropyl Silanes in Microfluidic Channels for Highly Efficient Microchip Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry," Analytical Chemistry, vol. 86, pp. 3493-3500, 2014/04/01 2014. [24] M. Karas and R. Kruger, "Ion formation in MALDI: The cluster ionization mechanism," Chemical Reviews, vol. 103, pp. 427-439, Feb 2003. [25] J. Lee, S. A. Soper, and K. K. Murray, "A solid-phase bioreactor with continuous sample deposition for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry," Rapid Communications in Mass Spectrometry, vol. 25, pp. 693-699, Mar 30 2011. [26] C. W. Tsao, S. Tao, C. F. Chen, J. K. Liu, and D. L. DeVoe, "Interfacing microfluidics to LDI-MS by automatic robotic spotting," Microfluidics and Nanofluidics, vol. 8, pp. 777-787, Jun 2010. [27] J. Gorbatsova, M. Borissova, and M. Kaljurand, "Electrowetting on dielectric actuation of droplets with capillary electrophoretic zones for MALDI mass spectrometric analysis," Electrophoresis, vol. 33, pp. 2682-2688, Sep 2012. [28] H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, and C. J. Kim, "An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS," Lab on a Chip, vol. 6, pp. 1213-1219, 2006. [29] D. Chatterjee, A. J. Ytterberg, S. U. Son, J. A. Loo, and R. L. Garrell, "Integration of Protein Processing Steps on a Droplet Microfluidics Platform for MALDI-MS Analysis," Analytical Chemistry, vol. 82, pp. 2095-2101, Mar 1 2010. [30] F. Pereira, X. Z. Niu, and A. J. deMello, "A Nano LC-MALDI Mass Spectrometry Droplet Interface for the Analysis of Complex Protein Samples," Plos One, vol. 8, May 9 2013. [31] M. Zhong, C. Y. Lee, C. A. Croushore, and J. V. Sweedler, "Label-free quantitation of peptide release from neurons in a microfluidic device with mass spectrometry imaging," Lab on a Chip, vol. 12, pp. 2037-2045, 2012. [32] S. J. Wang, S. M. Chen, J. N. Wang, P. Xu, Y. M. Luo, Z. X. Nie, et al., "Interface solution isoelectric focusing with in situ MALDI-TOF mass spectrometry," Electrophoresis, vol. 35, pp. 2528-2533, Sep 2014. [33] I. M. Lazar and J. L. Kabulski, "Microfluidic LC device with orthogonal sample extraction for on-chip MALDI-MS detection," Lab on a Chip, vol. 13, pp. 2055-2065, 2013. [34] Y. J. Guo, A. P. Dennison, Y. Li, J. Luo, X. T. Zu, C. L. Mackay, et al., "Nebulization of water/glycerol droplets generated by ZnO/Si surface acoustic wave devices," Microfluidics and Nanofluidics, vol. 19, pp. 273-282, Aug 2015. [35] S. K. R. S. Sankaranarayanan and V. R. Bhethanabotla, "Design of efficient focused surface acoustic wave devices for potential microfluidic applications," Journal of Applied Physics, vol. 103, Mar 15 2008. [36] S. R. Heron, R. Wilson, S. A. Shaffer, D. R. Goodlett, and J. M. Cooper, "Surface Acoustic Wave Nebulization of Peptides As a Microfluidic Interface for Mass Spectrometry," Analytical Chemistry, vol. 82, pp. 3985-3989, May 15 2010. [37] L. Bllaci, S. Kjellstrom, L. Eliasson, J. R. Friend, L. Y. Yeo, and S. Nilsson, "Fast Surface Acoustic Wave-Matrix-Assisted Laser Desorption Ionization Mass Spectrometry of Cell Response from Islets of Langerhans," Analytical Chemistry, vol. 85, pp. 2623-2629, Mar 5 2013. [38] J. Ho, M. K. Tan, D. B. Go, L. Y. Yeo, J. R. Friend, and H. C. Chang, "Paper-Based Microfluidic Surface Acoustic Wave Sample Delivery and Ionization Source for Rapid and Sensitive Ambient Mass Spectrometry," Analytical Chemistry, vol. 83, pp. 3260-3266, May 1 2011. [39] H. S. Chen, T. Rejtar, V. Andreev, E. Moskovets, B. L. Karger, "High-speed, high-resolution monolithic capillary LC-MALDI MS using an off-line continuous deposition interface for proteomic analysis," Analytical Chemistry, vol. 77, pp. 2323-2331, Apr 15 2005. [40] H. K. Musyimi, J. Guy, D. A. Narcisse, S. A. Soper, K. K. Murray, " Direct coupling of polymer-based microchip electrophoresis to online MALDI-MS using a rotating ball inlet," Electrophoresis, vol. 26, pp. 4703-4710, Dec 2005. [41] F. Basile, G. E. Kassalainen, S. K. R. Williams, "Interface for direct and continuous sample-matrix deposition onto a MALDI probe for polymer analysis by thermal field flow fractionation and off-line MALDI-MS," Analytical Chemistry, vol. 77, pp. 3008-3012, May1 2005. [42] J. B. Young, L. Li, "An impulse-driven liquid-droplet deposition interface for combining LC with MALDI MS and MS/MS," Journal of the American Society for Mass Spectrometry, vol. 17, pp. 325-334, Mar 2006. [43] J. B. Young, L. Li, "Impulse-driven heated-droplet deposition interface for capillary and microbore LC-MALDI MS and MS/MS," Analytical Chemistry, vol. 79, pp. 5927-5934, Aug 1 2007. [44] J. Lee, H. K. Musyimi, S. A. Soper, K. K. Murray, "Development of an automated digestion and droplet deposition microfluidic chip for MALDI-TOF MS," Journal of the American Society for Mass Spectrometry, vol. 19, pp. 964-972, Jul 2008. [45] Cooley, Patrick W. Wallace, David B. Antohe, Bogdan V. , " Applications of ink-jet printing technology to BioMEMS and microfluidic systems," Proceedings, SPIE Conference on Microfluidics and BioMEMS, vol. 4560, pp. 177-188, Oct 2001. [46] S. Song, S. Kim, C. S. Kim, P. Kang, B. Ku, "Multi-chamber actuated micro-dispensing with a single nozzle for sub-nanoliter droplet formation," Journal of Micromechanics and Microengineering, vol. 24, pp. 1-9, May 2014. [47] J. Bergkvist, T. Lilliehorn, J. Nilsson, S. Johansson, T. Laurell, "Miniaturized flowthrough microdispenser with piezoceramic tripod actuation," Journal of Microelectromechanical Systems, vol. 14, pp. 134-140, Feb 2005. [48] H. L. Tsai, W. S. Hwang, J. K. Wang, W. C. Peng, S. H. Chen, " Fabrication of Microdots Using Piezoelectric Dispensing Technique for Viscous Fluids," Materials, vol. 8, pp. 7006-7016, Oct 2015. [49] X. Zhong S. Lam, "Perpetual-operation Frequency Response and Equivalent Circuit Modelling of Piezoelectric Ultrasonic Atomizer Devices," IEEE International Ultrasonics Symposium Proceedings,pp.1-4, 21-24 Oct. 2015. [50] Andrew McHutchon,"RLC Resonant Circuits," pp.1-7, Apr 20 2013. [51] Fabricio G. Baptista *, Danilo E. Budoya, Vinicius A. D. de Almeida and Jose Alfredo C. Ulson," An Experimental Study on the Effect of Temperature on Piezoelectric Sensors for Impedance-Based Structural Health Monitoring," Sensors,vol. 14, pp. 1208-1227, 2014. [52] Y. N. Xia and G. M. Whitesides, "Soft lithography," Annual Review of Materials Science, vol. 28, pp. 153-184, 1998.
|