跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/21 04:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐晏貞
研究生(外文):Yen-Chen Hsu
論文名稱:應用鈣鈦礦型光觸媒去除水中三氯乙烯之效率探討
論文名稱(外文):Removal of tricholorethylene in water via perovskite-type photocatalyst
指導教授:張木彬張木彬引用關係
指導教授(外文):Moo-Been Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:63
中文關鍵詞:光觸媒催化液相反應三氯乙烯可見光
外文關鍵詞:photocatalytic oxidationvisible lightliquid phasetrichloroethylene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
隨著快速都市化與工業化,諸多工廠林立,大規模工業廢水排至水體已造成環境上嚴重水污染,台灣深受水污染的場址更為廣泛,根據環保署統計三氯乙烯(TCE)為地下水中第二常見的污染物,美國環保署及國際癌症組織亦將TCE列為對人類有害的致癌物,於諸多水污染處理技術中,高級氧化處理程序(AOP)具有高效率且生成之副產物為非毒性(CO2及H2O)之優點,而光觸媒降解即為一種AOP方式,藉由光觸媒吸收光能,激發電子從價帶躍遷至導帶,生成電子電洞對,除了本身具有強還原力及強氧化力外,亦可與水分子及氧分子反應生成不同自由基,破壞TCE。TiO2為最普遍之光觸媒材料,卻受限於僅由紫外光激發,大幅降低環境工程應用性,近年來,鈣鈦礦型(perovskite-type)觸媒經證實可被可見光激發,而LaFeO3為常見perovskite光觸媒的一種,具易改質及穩定之特性,且對光降解染料具有良好的處理效率,因此本研究開發LaFeO3作為光觸媒,並就其降解水中TCE之可行性進行探討。本研究結果成功使用sol-gel法製備LaFeO3光觸媒,其具大比表面積及良好的孔洞分布特性,提供觸媒表面更多的吸附及活性位址,除了增加TCE吸附效應外亦增加表面電子電洞對的生成,而藉由對光反應批次系統進行空白測試的結果指出本實驗設計之光反應器可提高光利用效率且具有氣密性,反應器內TCE不隨時間揮發,去除效率不因TCE揮發性而改變。此外,本研究證實於氙燈(Xe lamp)照射下LaFeO3光觸媒可於1 hr有效降解水中TCE(96%),而光強度、觸媒添加量及pH皆對光觸媒降解帶來正面的影響,其原因為於反應過程隨三種參數的提升,光子數量、反應位址及OH自由基亦增加,使得水中TCE被破壞的機率上升,增加TCE去除效率。本研究亦對反應後的產物(HCl)進行量測,結果指出經反應後約84%TCE的氯原子生成HCl,顯示光觸媒降解速率相當迅速,毒性中間產物生成的可能性較低,更彰顯環境應用之價值。
With rapid urbanization and industrialization, anthropogenic discharge of organic compounds has led to serious water pollution. In Taiwan, water contamination has been discovered widespread, and tricholorethylene (TCE) is ranked as second common organic pollutant in groundwater. The Environmental Protection Agency (EPA) has classified TCE as a human carcinogen. Thus, there is an urgent need to eliminate TCE. Advanced Oxidation Process (AOP), which is of the highest efficiency to remove organic pollutants and produce non-toxic byproducts, is better than other traditional treatments. Photocatalytic oxidation is one of the AOPs. In recent years, perovskite-type photocatalysts have been found with high photocatalytic activity under visible light in addition to TiO2. Besides, LaFeO3 becomes a kind of potential “environmentally friendly photocatalyst” due to its advantages of abundance and non-toxicity. It can utilize the visible light efficiently and generate electron-hole pairs under visible light to photocatalytically degrade contaminants in water. LaFeO3 is prepared and applied as photocatalyst to remove TCE in liquid phase. In summary, LaFeO3 photocatalyst is successfully synthesized via sol-gel method. Furthermore, LaFeO3 photocatalyst is proved for good photocatalytic activity for the degradation of TCE in aqueous solution under continuous spectrum illumination within 1 h. In our experiment, TCE concentration can maintain the same in this system and ensures that the TCE removal is contributed by photocatalytic degradation rather than volatility. The effects of light intensity, photocatalyst loading and pH on TCE photodegradation are evaluated. By increasing the light intensity, activated sites and OH group would accelerate the formation rate of OH radical to attack TCE in aqueous phase, resulting in higher TCE removal efficiency.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 研究緣起 1
1-1 前言 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 三氯乙烯概述 3
2-1-1 地下水三氯乙烯污染概況 3
2-1-2 三氯乙烯污染地下水機制 5
2-1-3 三氯乙烯來源、特性及毒性 6
2-2 地下水污染物整治技術 7
2-2-1 物理法 7
2-2-2 化學法 9
2-2-3 生物法 11
2-3 光觸媒降解三氯乙烯之機制及發展現況 12
2-4 鈣鈦礦型光觸媒介紹及發展現況 16
第三章 研究方法 20
3-1 研究流程設計 20
3-2 實驗系統架設 22
3-3 實驗流程 23
3-2-1 光觸媒製備 23
3-2-2 光降解實驗 23
3-2-3 樣品萃取及分析 24
3-4 實驗設備及材料 25
3-3-1 實驗設備 25
3-3-2 實驗藥品 26
3-3-3 實驗材料 26
3-5 其他儀器分析原理 27
3-4-1 BET 比表面積分析儀 27
3-4-2 X光繞射分析儀 (XRD) 29
3-4-3 掃描式電子顯微鏡分析 (SEM) 30
3-4-4 穿透式電子顯微鏡 (TEM) 30
3-4-5 分光光度計 31
第四章 結果與討論 32
4-1 觸媒基本物化特性分析 32
4-2 系統穩定性測試 35
4-3 光觸媒參數測試 35
4-3-1 光強度對TCE去除效率之影響 35
4-3-2 觸媒添加量對TCE去除效率之影響 36
4-3-3 初始pH對TCE降解效率之影響 38
4-3-4 初始TCE濃度對TCE降解效果之影響 39
4-3-5 光觸媒去除TCE機制之探討 40
4-4 不同光觸媒降解之比較 43
第五章 結論與建議 45
5-1 結論 45
5-2 建議 46
參考文獻 47
Alexander, M. V., and J. J. Rosentreter, 2008, Photocatalytic oxidation of aqueous trichloroethylene using dye sensitized buoyant photocatalyst monitored via micro-headspace solid-phase microextration gas chromatography/electron capture detection and mass spectrometry: Microchemical Journal, v. 88, p. 38-44.
Bak, S. A., M. S. Song, I. T. Nam, and W. G. Lee, 2015, Photocatalytic oxidation of trichloroethylene in water using a porous ball of nano-ZnO and nanoclay composite: Journal of Nanomaterials, v. 16, p. 8.
Behnajady, M. A., N. Modirshahla, and R. Hamzavi, 2006, Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst: Journal of Hazardous Materials, v. 133, p. 226-232.
Bob, M. M., M. C. Brooks, S. C. Mravik, and A. L. Wood, 2008, A modified light transmission visualization method for DNAPL saturation measurements in 2-D models: Advances in Water Resources, v. 31, p. 727-742.
Chao, K. P., S. K. Ong, T. Fryzek, W. Yuan, and W. Braida, 2012, Degradation of trichloroethylene using iron, bimetals and trimetals: Journal of Environmental Science and Health, Part A, v. 47, p. 1536-1542.
Chong, M. N., B. Jin, C. W. K. Chow, and C. Saint, 2010, Recent developments in photocatalytic water treatment technology: A review: Water Research, v. 44, p. 2997-3027.
Cundall, R. B., R. Rudham, and M. S. Salim, 1976, Photocatalytic oxidation of propan-2-ol in the liquid phase by rutile: Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, v. 72, p. 1642-1651.
Dobaradaran, S., H. Lutze, A. H. Mahvi, and T. C. Schmidt, 2014, Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations: Journal of Environmental Health Science and Engineering, v. 12.
Farooq, M., I. A. Raja, and A. Pervez, 2009, Photocatalytic degradation of TCE in water using TiO2 catalyst: Solar Energy, v. 83, p. 1527-1533.
He, F., D. Zhao, J. Liu, and C. B. Roberts, 2007, Stabilization of Fe−Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater: Industrial & Engineering Chemistry Research, v. 46, p. 29-34.
Hu, R., C. Li, X. Wang, Y. Sun, H. Jia, H. Su, and Y. Zhang, 2012, Photocatalytic activities of LaFeO3 and La2FeTiO6 in p-chlorophenol degradation under visible light: Catalysis Communications, v. 29, p. 35-39.
Hung, C. H., and B. J. Mariñas, 1997, Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films: Environmental Science & Technology, v. 31, p. 1440-1445.
Ildiko, F. K., M. Monika, A. Agota, G. Katalin, and F. Eva, 2013, Hydrogen peroxide oxidation for in situ remediation of trichloroethylene - from the laboratory to the field: Periodica Polytechnica-Chemical Engineering, v. 57, p. 41-51.
Jang, D. G., C. H. Ahn, J. S. Choi, J. H. Kim, J. K. Kim, and J. C. Joo, 2016, Enhanced removal of trichloroethylene in water using nano-ZnO/polybutadiene rubber composites: Catalysts, v. 6.
Joo, J. C., C. H. Ahn, D. G. Jang, Y. H. Yoon, J. K. Kim, L. Campos, and H. Ahn, 2013, Photocatalytic degradation of trichloroethylene in aqueous phase using nano-ZNO/Laponite composites: Journal of Hazardous Materials, v. 263, p. 569-574.
Kaown, D., S. C. Jun, R. H. Kim, S. Woosik, and K. K. Lee, 2016, Characterization of a site contaminated by chlorinated ethenes and ethanes using multi-analysis: Environmental Earth Sciences, v. 75.
Lebid, M., and M. Omari, 2016, Synthesis and electrochemical properties of LaFeO3 oxides prepared via Sol–Gel method: Arabian Journal for Science and Engineering, v.39, p.147-152
Lewis, S., A. Lynch, L. Bachas, S. Hampson, L. Ormsbee, and D. Bhattacharyya, 2009, Chelate-modified Fenton reaction for the degradation of trichloroethylene in aqueous and two-phase systems: Environmental Engineering Science, v. 26, p. 849-859.
Li, S., L. Jing, W. Fu, L. Yang, B. Xin, and H. Fu, 2007, Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation: Materials Research Bulletin, v. 42, p. 203-212.
Liang, C., Z.S. Wang, and C. J. Bruell, 2007, Influence of pH on persulfate oxidation of TCE at ambient temperatures: Chemosphere, v. 66, p. 106-113.
Linsebigler, A. L., G. Lu, and J. T. Yates, 1995, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results: Chemical Reviews, v. 95, p. 735-758.
Lovelace, K., 1997, Evaluation the technical impracticability of groundwater cleanup: 1997 International Conference on Groundwater Quality Protection, Taipei, p. 165-179.
Marezio, M., and P. D. Dernier, 1971, The bond lengths in LaFeO3: Materials Research Bulletin, v. 6, p. 23-29.
Meriaudeau, P., and J. C. Vedrine, 1976, Electron paramagnetic resonance investigation of oxygen photoadsorption and its reactivity with carbon monoxide on titanium dioxide: the O3–3 species: Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, v. 72, p. 472-480.
Miyake, Y., A. Sakoda, H. Yamanashi, H. Kaneda, and M. Suzuki, 2003, Activated carbon adsorption of trichloroethylene (TCE) vapor stripped from TCE-contaminated water: Water Research, v. 37, p. 1852-1858.
Moroizumi, T., and Y. Sasaki, 2008, Estimating the nonaqueous-phase liquid content in saturated sandy soil using amplitude domain reflectometry: Soil Science Society of America Journal, v. 72, p. 1520-1526.
Morono, Y., H. Unno, and K. Hori, 2006, Correlation of TCE cometabolism with growth characteristics on aromatic substrates in toluene-degrading bacteria: Biochemical Engineering Journal, v. 31, p. 173-179.
Mulligan, C., R. Yong, and B. Gibbs, 2001, Remediation technologies for metal-contaminated soils and groundwater: an evaluation: Engineering Geology, v. 60, p. 193-207.
Ndong, L. B. B., X. Gu, S. Lu, M. P. Ibondou, Z. Qiu, Q. Sui, S. M. Mbadinga, and B. Mu, 2015, Role of reactive oxygen species in the dechlorination of trichloroethene and 1.1.1-trichloroethane in aqueous phase in UV/TiO2 systems: Chemical Engineering Science, v. 123, p. 367-375.
Niu, J., L. Yin, Y. Dai, Y. Bao, and J. C. Crittenden, 2016, Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water: Applied Catalysis A: General, v. 521, p. 90-95.
O'Carroll, D. M., and B. E. Sleep, 2007, Hot water flushing for immiscible displacement of a viscous NAPL: Journal of contaminant hydrology, v. 91, p. 247-266.
Peng, K., L. Fu, H. Yang, and J. Ouyang, 2016, Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity: Scientific reports, v. 6.
Reitsma, S., and M. Marshall, 2000, Experimental study of oxidation of pooled NAPL: Second International Conference on Remediation of Chlorinated and Racalcitrant Compounds, p. 25-32.
Rusevova, K., R. Köferstein, M. Rosell, H. H. Richnow, F.-D. Kopinke, and A. Georgi, 2014, LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions: Chemical Engineering Journal, v. 239, p. 322-331.
Sharma, P. K., and P. L. McCarty, 1996, Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1, 2-dichloroethene: Applied and Environmental Microbiology, v. 62, p. 761-765.
Shen, H., T. Xue, Y. Wang, G. Cao, Y. Lu, and G. Fang, 2016, Photocatalytic property of perovskite LaFeO3 synthesized by sol-gel process and vacuum microwave calcination: Materials Research Bulletin, v. 84, p. 15-24.
Suttinun, O., R. Müller, and E. Luepromchai, 2010, Cometabolic degradation of trichloroethene by Rhodococcus sp. strain L4 immobilized on plant materials rich in essential oils: Applied and Environmental Microbiology, v. 76, p. 4684-4690.
Tang, P., Y. Tong, H. Chen, F. Cao, and G. Pan, 2013, Microwave-assisted synthesis of nanoparticulate perovskite LaFeO3 as a high active visible-light photocatalyst: Current Applied Physics, v. 13, p. 340-343.
The Agency for Toxic Substances and Disease Registry(ATSDR)Toxicological Profile for trichloroethylene, available at http://www.atsdr.cdc.gov/toxfaqs/tfacts19.pdf (accessed June 9, 2015)
Thirumalairajan, S., K. Girija, I. Ganesh, D. Mangalaraj, C. Viswanathan, A. Balamurugan, and N. Ponpandian, 2012, Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-assembly process and their associated photocatalytic activity: Chemical Engineering Journal, v. 209, p. 420-428.
Tseng, H.H., J. G. Su, and C. Liang, 2011, Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene: Journal of Hazardous Materials, v. 192, p. 500-506.
Waduge, W. A. P., K. Soga, and J. Kawabata, 2004, Effect of NAPL entrapment conditions on air sparging remediation efficiency: Journal of Hazardous Materials, v. 110, p. 173-183.
Wang, Y., J. Zhu, L. Zhang, X. Yang, L. Lu, and X. Wang, 2006, Preparation and characterization of perovskite LaFeO3 nanocrystals: Materials Letters, v. 60, p. 1767-1770.
Wickramanayake, G. B., A. R. Gavaskar, and A. S. Chen, 2000, Remediation of chlorinated and recalcitrant compounds: Chemical oxidation and reactive barriers: Battele Press, Columbus
Yamaguchi, S., W. Hiroki, D. Sanchez-Rodriguez, J. Farjas, and H. Yahiro, 2016, Synthesis of perovskite-type oxide, LaFeO3, from coordination polymer precursor, La[Fe(CN)6]• 5H2O: Journal of the Ceramic Society of Japan, v. 124, p. 7-12.
Yamazaki, S., S. Matsunaga, and K. Hori, 2001a, Photocatalytic degradation of trichloroethylene in water using TiO2 pellets: Water Research, v. 35, p. 1022-1028.
Yang, H., G. Li, T. An, Y. Gao, and J. Fu, 2010, Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: A case of sulfa drugs: Catalysis Today, v. 153, p. 200-207.
Zhang, Y., M. Park, H. Y. Kim, B. Ding, and S.-J. Park, 2016, In-situ synthesis of nanofibers with various ratios of BiOClx/BiOBry/BiOIz for effective trichloroethylene photocatalytic degradation: Applied Surface Science, v. 384, p. 192-199.
Zogorski, J. S., J. M. Carter, T. Ivahnenko, W. W. Lapham, M. J. Moran, B. L. Rowe, P. J. Squillace, and P. L. Toccalino, 2006, Volatile organic compounds in the nation’s ground water and drinking-water supply wells: US Geological Survey Circular, v. 1292, p. 101.
土壤及地下水污染事件應變調查、查證及技術,行政院環保署土壤及地下水污染整治基金管理會,2016,https://sgw.epa.gov.tw/public/0506.aspx土壤及地下水污染整治年報,行政院環保署土壤及地下水污染整治基金管理會,2001-2015
白崢鈺,淺談奈米光觸媒於室內空氣污染物之應用,財團法人台灣產業服務基金會
向華, 施儉, 張青, 陸峰, 2011, 曝氣吹脱法去除水中三氯乙烯等有機污染物: 淨水技術, v. 30, p. 151-154.
李中光,劉新校,邱惠敏,臭氧在水處理中之應用,環保簡訊,第 27 期,2015
胡順之, 2011, 三氯乙烯污染地下水的吹脱方法研究 [D], 上海: 華東理工大學.
梁書豪、簡華逸、郭育嘉、楊宗翰、高志明,土壤及地下水整治技術發展簡介,國立中山大學環境工程研究所所碩士論文,2013
陳家洵,董天行, 三氣乙烯污染地下水之整治標準研究期末報告,國立中央大學應用地質研究所,1998
謝介士,葉瑾瑜,陳紫媖,東港生技研究中心,海中無機氮化合物最新去除法-光電化學法,水試所電子報第49期,2010
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top