跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/08 16:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何承彬
研究生(外文):Cheng-Bin He
論文名稱:結合鈣鈦礦型觸媒及非熱電漿技術去除氣流中三氯乙烯之可行性探討
論文名稱(外文):Catalytic oxidation of trichloroethylene via combining non-thermal plasma and perovskite-type catalyst
指導教授:張木彬張木彬引用關係
指導教授(外文):Moo-Been Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:112
中文關鍵詞:揮發性有機物三氯乙烯非熱電漿技術Perovskite-type觸媒單階段電漿結合觸媒系統
外文關鍵詞:TrichloroethylenePerovskite-type CatalystNon-thermal PlasmaPlasma Catalysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
揮發性有機污染物(VOCs) 對人體健康與環境造成不利的影響,短時間接觸VOCs使人感到不適,產生頭暈、噁心、嘔吐、流淚、刺鼻、咳嗽等症狀,暴露於濃度過高之VOCs時可能導致中毒死亡,長期接觸則導致肝、肺、呼吸道等疾病,而含氯的有機溶劑大部份已證實具有致癌性,其對人體健康及環境造成的影響不容忽視。
本研究分為兩個部份,第一部份為使用檸檬酸凝膠法製備perovskite-type觸媒LaMnO3,以Ce及Ni金屬進行觸媒改質,分別製備LaMnO3、La0.8Ce0.2MnO3及La0.8Ce0.2Mn0.8Ni0.2O3三種觸媒,除比較去除氣流中三氯乙烯之活性外,亦透過XRD、BET、SEM-EDS、XPS儀器分析觸媒之物化特性,藉由操作參數了解最佳之控制技術。研究結果顯示La0.8Ce0.2Mn0.8Ni0.2O3在400oC對三氯乙烯去除效率可達100%且在600oC對三氯乙烯之礦化率已達100%,而La0.8Ce0.2MnO3及LaMnO3則需於450oC及500oC才可達完全去除之效率。從觸媒測試結果顯示改質之La0.8Ce0.2Mn0.8Ni0.2O3對三氯乙烯之去除具有最佳活性,因此以此觸媒進行後續實驗。第二部份為在常溫下進一步利用perovskite-type觸媒結合非熱電漿系統以評估去除三氯乙烯之效能,結果顯示此系統對三氯乙烯之去除效率達100%;與單獨非熱電漿系統相比較,在去除三氯乙烯實驗中電漿催化系統的礦化率可提升至44%,且可大幅降低副產物(O3、NOx)的產生;能量效率方面,單階段電漿結合觸媒系統顯著高於非熱電漿系統。整體而言,本研究所研發之電漿結合觸媒系統是一種創新並且有效的VOCs控制技術,可協助工商業解決VOCs引發之空氣污染問題。
Volatile organic compounds (VOCs) have been widely used in industrial processes. Among them, trichloroethylene(TCE) is a solvent mainly used for metal degreasing and dry cleaning. However, it is toxic and probably causes cancer for humans. Perovskite-type catalysts such as LaMnO3 have been studied for VOC removal and they can be modified by partial substitution to enhance catalytic activity and mineralization rate. Also, non-thermal plasma (NTP) can effectively eliminate VOCs, because NTP can generate radicals to decompose and oxidize VOC molecules. However, NTP has several drawbacks such as low selectivity and O3 formation. In this study, removal of trichloroethylene (TCE) is investigated using a hybrid system which combines NTP and perovskite-type catalyst. The operating conditions are TCE = 150 ppm, applied voltage = 14 - 17 kV, frequency = 8 kHz, and gas flow rate = 500 mL/min. The removal efficiency of TCE achieved with the DBD plasma increases from 24% to 75% as applied voltage is increased from 14 to 17 kV, while mineralization rate is increased from 4% to 11%. For product analysis, phosgene (PG), dichloro acetyl chloride (DCAC), trichloroacetaldehyde (TCAD), O3, CO, and CO2 were mainly observed in the NTP process. As La0.8Ce0.2Mn0.8Ni0.2O3 is placed into the discharge zone to form the hybrid system, the removal efficiency of TCE achieved increases from 24% to 90% as the applied voltage is increased from 14 to 17 kV, while mineralization rate achieved with plasma catalysis reaches 41% at 17 kV. More importantly, the formation of the hazardous products such as O3, NOx, phosgene, and chlorine is significantly reduced as a perovskite-type catalyst is introduced. Overall, the preliminary results indicate that plasma catalysis can enhance the performance of catalyst for TCE removal.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 VIII
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 4
2.1揮發性有機物之簡介 4
2.1.1揮發性有機物定義及種類 4
2.1.2氯化性揮發性有機物之危害及影響 6
2.1.3國內VOCs排放現況與法規 7
2.1.4揮發性有機物之控制技術 9
2.2實驗選定之標的揮發性有機物特性 12
2.3電漿 15
2.3.1電漿來源及原理 15
2.3.2電漿種類 16
2.4電漿去除VOCs之反應機制 21
2.5 Perovskite-type觸媒 23
2.5.1 Perovskite-type觸媒介紹 23
2.5.2 Perovskite-type觸媒應用於VOCs之去除 25
2.6 反應動力探討 28
2.6.1 觸媒異相反應模式 28
2.6.2 Arrhenius 方程式 29
2.7非熱電漿觸媒系統 30
2.7.1電漿結合觸媒之機制探討 31
第三章 研究方法 36
3.1研究流程及架構 36
3.2預備實驗 38
3.2.1觸媒材料製備 38
3.2.2觸媒材料之物化特性分析 39
3.3實驗分析方法 42
3.3.1三氯乙烯之分析方法及檢量線製作 42
3.3.2空氣中Cl2與HCl之檢測方法: 43
3.4實驗測試方法及配置 45
3.4.1連續進流的VOCs產生系統配置 45
3.4.2觸媒測試方法及實驗配置 46
3.4.3電漿觸媒測試方法及實驗配置 49
3.5實驗設備及材料 51
3.5.1實驗設備 51
3.5.2實驗藥品與氣體 54
3.6實驗結果之計算 55
第四章 結果與討論 57
4.1 Perovskite-type觸媒物化特性分析 57
4.1.1 XRD晶相分析 57
4.1.2 BET氮氣吸脫附及SEM-EDS元素分析 58
4.1.3 FE-SEM分析 59
4.1.4 ESCA特性分析 60
4.2 Perovskite-type觸媒對三氯乙烯之活性測試 64
4.2.1溫度對三氯乙烯去除之影響 64
4.2.2空間流速對三氯乙烯去除之影響 66
4.2.3穩定性測試 67
4.2.4 NO同時去除之測試 68
4.2.5反應動力探討 70
4.2.6副產物生成探討 73
4.3非熱電漿系統及單階段電漿催化系統對三氯乙烯之測試 76
4.3.1不同施加電壓條件下對於三氯乙烯去除效率之影響 76
4.3.2頻率對三氯乙烯去除效率之影響 78
4.3.3濕度對三氯乙烯去除效率之影響 80
4.3.4進流三氯乙烯濃度對三氯乙烯去除效率之影響 82
4.3.5三氯乙烯去除之最終產物分析 83
4.3.6三氯乙烯反應途徑推估 87
第五章 結論與建議 89
5.1結論 89
5.2建議 90
參考文獻 91
Alami D., “Environmental applications of rare-Earth manganites as catalysts: a comparative study”, Environmental Engineering Research, 18:211-219 (2013).
Aerts R., Tu X., Van Gaens W., Whitehead J. C., Bogaerts A., “Gas purification by nonthermal plasma: a case study of ethylene”, Environmental Science & Technology, 47(12):6478-6485 (2013).
Bertinchamps F., Treinen M., Eloy P., Dos Santos A. M., Mestdagh M. M., Gaigneaux E. M., “Understanding the activation mechanism induced by NOx on the performances of VOx/TiO2 based catalysts in the total oxidation of chlorinated VOCs”, Applied Catalysis B: Environmental, 70:360-369 (2007).
Barbero B. P., Gamboa J. A., Cadús L. E., “Synthesis and characterization of La1−xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds”, Applied Catalysis B: Environmental, 65(1-2):21-30 (2006).
Blanch-Raga N., Palomares A. E., Martínez-Triguero J., Valencia S., “Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation”, Applied Catalysis B: Environmental, 187:90-97 (2016).
Chang J. S., Lawless P. A., Yamamoto, T., “Corona discharge processes”, Institute of Electrical and Electronics Engineers, 19: 1152-1166 (1991).
Corella J., Toledo J. M., Padilla A. M., “On the selection of the catalyst among the commercial platinum-based ones for total oxidation of some chlorinated hydrocarbons”, Applied Catalysis B: Environmental, 27:243-256 (2000).
Connell M., Norman A. K., HuÈttermann C. F., Morris M. A., “Catalytic oxidation of lanthanum-transition metal perovskite materials”, Catalysis Today, 47:123-132 (1999).
Chen H. L., Lee H. M., Chen S. H., Chao Y., Chang M. B., “Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration, and prospects”, Applied Catalysis B: Environmental, 85(1-2):1-9 (2008).
Chen S. X., Wang Y., Jia A. P., Liu H. H., Luo M. F., Lu J. Q., “Enhanced activity for catalytic oxidation of 1,2-dichloroethane over Al-substituted LaMnO3 perovskite catalysts”, Applied Surface Science, 307:178-188 (2014).
Ding Y., Wang S., Zhang L., Chen Z., Wang M., Wang S., “A facile method to promote LaMnO3 perovskite catalyst for combustion of methane”, Catalysis Communications, 97:88-92 (2017).
Eliasson B., Kogelschatz U., “Modeling and applications of silent discharge plasmas”, IEEE Transactions on Plasma Science, 19(2):309-323 (1991).
Evans D., Rosocha L. A., Anderson G. K., Coogan J. J., Kushner M. J., “Plasma remediation of trichloroethylene in silent discharge plasmas”, Journal of Applied Physics, 74(9):5378-5386 (1993).
Everaert K., Baeyens J., “Catalytic combustion of volatile organic compounds”, Journal of Hazardous Materials B, 109:113-119 (2004).
Goldschmidt V. M., “Die gesetze der krystallochemie. Naturwissenschaften”, 14(21):477-485 (1926).
Guo Y. F., Ye D. Q., Chen K. F., He J. C., Chen W. L., “Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ”, Journal of Molecular Catalysis A: Chemical, 245(1):93-100 (2006).
Guaitella O., Thevenet F., Puzenat E., Guillard C., Rousseau A., “C2H2 oxidation by plasma/TiO2 combination: influence of the porosity, and photocatalytic mechanisms under plasma exposure”, Applied Catalysis B: Environmental, 80(3):296-305(2008).
Huang B., Lei C., Wei C., Zeng G., “Chlorinated volatile organic compounds (Cl-VOCs) in the environment - sources, potential human health impacts, and current remediation technologies”, Environment International, 71:118-138 (2014).
Indarto A., Choi J. W., Lee H., Song H. K., “Decomposition of greenhouse gases by plasma”, Environmental Chemistry Letters, 6:215-222 (2008).
Ivanova S., Pérez A., Centeno M. Á., Odriozola J. A., “Structured catalysts for volatile organic compound removal”, New and Future Developments in Catalysis Catalysis for Remediation and Environmental Concerns, 233-256 (2013).
Jun A., Kim J., Shin J., Kim G.,“Perovskite as a cathode material: A review of its Role in solid‐oxide fuel cell technology”, ChemElectroChem, 3(4):511-530 (2016).
Jiang N., Hu J., Li J., Shang K., Lu N., Wu Y., “Plasma-catalytic degradation of benzene over Ag–Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas”, Applied Catalysis B: Environmental, 184:355-363 (2016).
Kaczynski M., van Ommen J. G.,“Catalytic combustion of trichloroethylene over TiO2-SiO2 supported catalysts”, Applied Catalysis B:Environmental, 36: 239-247 (2002).
Kim H. H., Ogata A., Futamura S.,“Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis”, IEEE Transactions on Plasma Science, 34(3):984-995 (2006).
Kaddouri K., Gelin P., Dupont N., “Methane catalytic combustion over La–Ce–Mn–O-perovskite prepared using dielectric heating”, Catalysis Communications, 10:1085-1089 (2009).
Karuppiah J., Sivachandiran L., Karvembu R., Subrahmanyam C., “Catalytic nonthermal plasma reactor for the abatement of low concentrations of isopropanol”, Chemical Engineering Journal, 165(1): 194-199 (2010).
Kim C. H., Qi G., Dahlberg K., Li W., “Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust, Science”, 327(5973):1624-1627 (2010).
Karuppiah J., Reddy E. L., Reddy P. M. K., Ramaraju B., Subrahmanyam C., “Catalytic nonthermal plasma reactor for the abatement of low concentrations of benzene”, International Journal of Environmental Science and Technology, 11(2): 311-318 (2014).
Louis A. R., Graydon K. A., and John J. C., “Plasma remediation of trichloroethylene in silent discharge plasmas”, Journal of Applied Physics, 5378 (1993).
Liu Y., Shao M., Lu S., Chang C. C., Wang J. L., Fu L., “Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II”, Atmospheric Environment, 42(25):6261-6274 (2008).
Li H., Lu G., Dai Q., Wang Y., Guo Y., Guo Y., “Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres”, Applied Catalysis B: Environmental, 102(3): 475-483 (2011).
Liu G., Li J., Yang K., Tang W., Liu H., Yang J., Chen Y., “Effects of cerium incorporation on the catalytic oxidation of benzene over flame-made perovskite La1− xCexMnO3 catalysts”, Particuology, 19:60-68 (2015).
Labhasetwar N., Saravanan G., Nagarajan S. K., Manwar N., Khobragade R., Doggali P., Grasset F., “Perovskite-type catalytic materials for environmental applications”, Science and Technology of Advanced Materials, 16(3):036002 (2015).
Marinova Y., Hohenberger J. M., Cordoncillo E., Escribano P., Carda J. B., “Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments”, Journal of the European Ceramic Society, 23(2):213-220 (2003).
Miranda B., Diaz E., Ordonez S., Diez F. V., “Catalytic combustion of trichloroethene over Ru/Al2O3: Reaction mechanism and kinetic study”, Catalysis Communications, 7:945-949 (2006).
Meyer C. I., Borgna A., Monzon A., Garetto T. F., “Kinetic study of trichloroethylene combustion on exchanged zeolites catalysts”, Journal of Hazardous Materials, 190:903-908 (2011).
Nehra V., Kumar A., Dwivedi H. K., “Atmospheric non-thermal plasma source”, International Journal of Engineering, 2:53-68 (2008).
Neyts E. C., Bogaerts A., “Understanding plasma catalysis through modeling and simulation—a review”,  Journal of Physics D Applied Physics, 47(22): 224010 (2014).
Norsic C., Tatibouët J. M., Batiot-Dupeyrat C., Fourré E., “Nonthermal plasma assisted catalysis of methanol oxidation on Mn, Ce and Cu oxides supported on γ-Al2O3”, Chemical Engineering Journal, 304: 563-572 (2016).
Nguyen Dinha M. T., Giraudon J. M., Vandenbroucke A. M., Moreno R., De Geyter N., Lemonier J. F., “Manganese oxide octahedral molecular sieve K-OMS-2 as the catalyst in post plasma-catalysis for trichloroethylene degradation in humid air”, Journal of Hazardous Materials, 314:88-94 (2016).
Ogata A., Ito D., Mizuno K., Kushiyama S., Gal A., Yamamoto T., “Effect of coexisting components on aromatic decomposition in a packed - bed plasma reactor”, Applied Catalysis A: General, 236:9-15 (2002).
Ojala S., Lassi U., Peramaki P., Keiski R. L., “Effect of process parameters on catalytic incineration of solvent emissions”, Journal of Automated Methods & Management in Chemistry, 75:41-91 (2008)
Prager L., Langguth H., Rummel S., Mehnert R., “Electron beam degradation of chlorinated hydrocarbons in air”, Radiation Physics and Chemistry, 46(4-6):1137-1142 (1995).
Spinicci R., Faticanti M., Marini P., De Rossi S., Porta P., “Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion”, Journal of Molecular Catalysis A: Chemical, 197(1-2): 147-155(2003).
Shang S., Liu G., Chai X., Tao X., Li X., Bai M., Yin Y., “Research on Ni/γ-Al2O3 catalyst for CO2 reforming of CH4 prepared by atmospheric pressure glow discharge plasma jet”, Catalysis Today, 148(3): 268-274 (2009).
Sui Z. J., Vradman L., Reizner I., Landau M. V., Herskowitz M., “Effect of preparation method and particle size on LaMnO3 performance in butane oxidation”, Catalysis Communications, 12:1437-1441 (2011).
Sun Y., Zhou L., Zhang L., Sui, H., “Synergistic effects of non-thermal plasma-assisted catalyst and ultrasound on toluene removal”, Journal of Environmental Sciences, 24(5): 891-896 (2012).
Sultana S., Vandenbroucke A. M., Leys C., De Geyter N., Moreno R. “Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: a review”, Catalysts, 5(2): 718-746 (2015).
Tichenor A. , Palazzolo, M. A., “Destruction of volatile organic compounds via catalytic incineration.”, Environment Progress, 6:172-176 (1987).
Trinh H. Q., Mok Y. S., “Plasma-catalytic oxidation of acetone in annular porous monolithic ceramic-supported catalysts”, Chemical Engineering Journal, 251:199-206(2014).
Van Durme J., Dewulf J., Leys C., Van Langenhove H., “Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment”: A review. Applied Catalysis B: Environmental, 78(3-4):324-333 (2008).
Vandenbroucke A. M., Mora M., Jiménez-Sanchidrián C., Romero-Salguero F. J., De Geyter N., Leys C., Moreno R., “TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst”, Applied Catalysis B: Environmental, 156-157:94-100 (2014).
Vandenbroucke, A. M., Moreno, R., De Geyter, N., Leys, C, “Non-thermal plasmas for noncatalytic and catalytic VOC abatement. Journal of hazardous materials”, 195:30-54 (2011).
Wu J., Xia Q., Wang H., Li Z., “Catalytic Performance of plasma catalysis system with nickel oxide catalysts on different supports for toluene removal: effect of water vapor”, Applied Catalysis B: Environmental, 156:265-272 (2014).
Wang B., Chi C., Xu M., Wang C., Meng D., “Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge”, Chemical Engineering Journal, 322:679-692 (2017).
Zhang-Steenwinkel Y., Beckers J., Bliek A., “Surface properties and catalytic performance in CO oxidation of cerium substituted lanthanum–manganese oxides”, Applied Catalysis A: General, 235:79-92 (2002).
Zhu J., Thomas A., “Perovskite-type mixed oxides as catalytic material for NO removal”, Applied Catalysis B: Environmental, 92(3-4):225-233 (2009).
Zhang C., Hu W., Wang C., Guo Y., Guo Y., Lu G., Baylet A., Giroir-Fendler A., “The effect of A-site substitution by Sr, Mg and Ce on the catalytic performance of LaMnO3 catalysts for the oxidation of vinyl chloride emission”, Applied Catalysis B: Environmental, 134-135:310- 315 (2013).
Zhang C., Wang C., Zhan W., Guo Y., Guo Y., Lua G., Baylet A., Giroir-Fendlerb A., “Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts”, Applied Catalysis B: Environmental, 129:509-516 (2013).
Zheng C., Zhu X., Gao X., Liu L., Chang Q., Luo Z., Cen K., “Experimental study of acetone removal by packed-bed dielectric barrier discharge reactor”, Journal of Industrial and Engineering Chemistry, 20(5):2761-2768 (2014).
Zhang C., Guo Y., Guo Y., Lu G., Boreave A., Retailleau L., Baylet A., Giroir-Fendler, A., “LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene”, Applied Catalysis B: Environmental, 148-149:490-498 (2014).
Zhang J., Tan D., Meng Q., Weng X., Wu Z., “Structural modification of LaCoO3 perovskite for oxidation reactions: The synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance”, Applied Catalysis B: Environmental, 172-173:18-26 (2015).
Zhang C., Wang C., Hua W., Guo Y., Lu G., Gil S., Giroir-Fendler A., “Relationship between catalytic deactivation and physicochemical properties of LaMnO3 perovskite catalyst during catalytic oxidation of vinyl chloride”, Applied Catalysis B: Environmental, 186:173-183 (2016).

MSDS危害物質危害數據資訊資料庫
環保署,半導體製造業空氣污染排放標準,(2002)
呂立德,化工動力與化工熱力,立功出版社,(1991)
高正雄,電漿化學,復漢出版社(台南) ,(1991)
黃柳青,化工動力學與反應設計下冊,科技出版社,(1993)
環保署,固定污染源揮發性有機物(VOC)收費可行性及衝擊評估計畫,(2000)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊