|
References [1] López-Higuera, José Miguel, ed. Handbook of optical fibre sensing technology. Wiley, 2002. [2] Keiser, Gerd. Optical fiber communications. McGraw-Hill Science, Engineering & Mathematics, 1983. [3] Mukherjee, Biswanath. Optical communication networks. McGraw-Hill Companies, 1997. [4] Wooten, Ed L., et al. "A review of lithium niobate modulators for fiber-optic communications systems." IEEE Journal of selected topics in Quantum Electronics 6.1 (2000): 69-82. [5] Gower, Malcolm C. "Industrial applications of laser micromachining." Optics Express 7.2 (2000): 56-67. [6] Lubatschowski, Holger, et al. "Ultrafast laser pulses for medical applications." High-Power Lasers and Applications. International Society for Optics and Photonics, 2002. [7] Daugman, John G. "Biometric personal identification system based on iris analysis." U.S. Patent No. 5,291,560. 1 Mar. 1994. [8] Brackett, Charles A. "Dense wavelength division multiplexing networks: Principles and applications." IEEE Journal on Selected Areas in Communications 8.6 (1990): 948-964. [9] Wooten, Ed L., et al. "A review of lithium niobate modulators for fiber-optic communications systems." IEEE Journal of selected topics in Quantum Electronics 6.1 (2000): 69-82. [10] Korotky, S. K., et al. "Optical intensity modulation to 40 GHz using a waveguide electro‐optic switch." Applied physics letters 50.23 (1987): 1631-1633. [11] Shen, Yonghang, et al. "PPMgLN-Based High-Power Optical Parametric Oscillator Pumped by Yb3+-Doped Fiber Amplifier Incorporates Active Pulse Shaping." IEEE Journal of Selected Topics in Quantum Electronics 15.2 (2009): 385-392. [12] Richardson, D. J., J. Nilsson, and W. A. Clarkson. "High power fiber lasers: current status and future perspectives [Invited]." JOSA B 27.11 (2010): B63-B92. [13] Savage, Neil. "Optical parametric oscillators." Nature Photonics 4.2 (2010): 124-125. [14] Oesterling, Lee, et al. "Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components." Journal of Modern Optics 62.20 (2015): 1722-1731. [15] Weis, R. S., and T. K. Gaylord. "Lithium niobate: summary of physical properties and crystal structure." Applied Physics A: Materials Science & Processing 37.4 (1985): 191-203. [16] Volk, T., N. Rubinina, and M. Wöhlecke. "Optical-damage-resistant impurities in lithium niobate." JOSA B 11.9 (1994): 1681-1687. [17] Furukawa, Y., et al. "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations." Applied Physics Letters 77.16 (2000): 2494-2496. [18] EKSMA Optics, http://eksmaoptics.com/. [19] Thorlabs, https://www.thorlabs.com/. [20] Lin, Dejiao, et al. "Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 µm pumped by a nanosecond linearly polarized fiber MOPA." Optics express 20.14 (2012): 15008-15014. [21] Orr, B. J., Y. He, and R. T. White. "Spectroscopic applications of tunable optical parametric oscillators." Tunable Laser Applications (2009): 15-95. [22] Shcherbakov, Alexandre S., Adán Omar Arellanes, and Emanuele Bertone. "Advanced collinear LiNbO3 acousto-optical filter for astrophysical spectroscopy in the near-ultraviolet: exploring high-spectral resolution." Journal of Astronomical Telescopes, Instruments, and Systems 1.4 (2015): 045002-045002. [23] Le Gouët, Julien, et al. "Experimental realization of phase-conjugate optical coherence tomography." Optics letters 35.7 (2010): 1001-1003. [24] Arditty, H. J., and H. C. Lefevre. "Theoretical basis of Sagnac effect in fiber gyroscopes." Fiber-Optic Rotation Sensors and Related Technologies. Springer Berlin Heidelberg, 1982. 44-51. [25] Lefevre, H. C. "The Fiber-optic Gyroscope 1Artech." Boston 19932 (1993): 107-132. [26] Chen, Y. H., et al. "Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate." Optics communications 223.4 (2003): 417-423. [27] Chang, C. L., et al. "Monolithically integrated multi-wavelength filter and second harmonic generator in aperiodically poled lithium niobate." Optics express 16.22 (2008): 18535-18544. [28] Chang, W. K., et al. "Two-dimensional PPLN for simultaneous laser Q-switching and optical parametric oscillation in a Nd: YVO 4 laser." Optics express 19.24 (2011): 23643-23651. [29] Chang, J. W., et al. "Characterization and analysis of finite-beam Bragg diffraction in a periodically poled lithium niobate electro-optic grating." Applied optics 53.24 (2014): 5312-5321. [30] Suhara, T., H. Okabe, and M. Fujimura. "Generation of polarization-entangled photons by type-II quasi-phase-matched waveguide nonlinear-optic device." IEEE Photonics Technology Letters 19.14 (2007): 1093-1095. [31] Fujii, Go, et al. "Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide." Optics express 15.20 (2007): 12769-12776. [32] Suhara, Toshiaki. "Generation of quantum‐entangled twin photons by waveguide nonlinear‐optic devices." Laser & Photonics Reviews 3.4 (2009): 370-393. [33] Ehret, G., et al. "Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere." Applied Physics B: Lasers and Optics 67.4 (1998): 427-431. [34] Spigulis, Janis, et al. "Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength photoplethysmography." Applied optics 46.10 (2007): 1754-1759. [35] Wirth, Martin, et al. "The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance." Applied Physics B: Lasers and Optics 96.1 (2009): 201-213. [36] Liu, Z. S., et al. "An incoherent Doppler lidar for ground-based atmospheric wind profiling." Applied Physics B: Lasers and Optics 64.5 (1997): 561-566. [37] Baxter, G. W., H-D. Barth, and B. J. Orr. "Laser spectroscopy with a pulsed, narrowband infrared optical parametric oscillator system: a practical, modular approach." Applied Physics B: Lasers and Optics 66.5 (1998): 653-657. [38] Weis, R. S., and T. K. Gaylord. "Lithium niobate: summary of physical properties and crystal structure." Applied Physics A: Materials Science & Processing 37.4 (1985): 191-203. [39] Yariv, Amnon, and Pochi Yeh. Optical waves in crystals. Vol. 10. Wiley, New York, 1984. [40] Chou, Ming-Hsien. Optical frequency mixers using three-wave mixing for optical fiber communications. Diss. Stanford University, 1999. [41] Hocker, G. B., and William K. Burns. "Mode dispersion in diffused channel waveguides by the effective index method." Applied Optics 16.1 (1977): 113-118. [42] Hocker, G., and W. Burns. "Modes in diffused optical waveguides of arbitrary index profile." IEEE Journal of Quantum Electronics 11.6 (1975): 270-276. [43] Van Roey, J., J. Van der Donk, and P. E. Lagasse. "Beam-propagation method: analysis and assessment." Josa 71.7 (1981): 803-810. [44] Haxha, Shyqyri, BM Azizur Rahman, and Kenneth TV Grattan. "Bandwidth estimation for ultra-high-speed lithium niobate modulators." Applied optics 42.15 (2003): 2674-2682. [45] Lefèvre, Hervé C. "The fiber-optic gyroscope, a century after Sagnac's experiment: The ultimate rotation-sensing technology?." Comptes Rendus Physique 15.10 (2014): 851-858. [46] Schmidt, R. V., and I. P. Kaminow. "Metal‐diffused optical waveguides in LiNbO3." Applied Physics Letters 25.8 (1974): 458-460. [47] Korotky, S., et al. "Mode size and method for estimating the propagation constant of single-mode Ti: LiNbO3 strip waveguides." IEEE Journal of Quantum Electronics 18.10 (1982): 1796-1801. [48] Jackel, Janet L., C. E. Rice, and J. J. Veselka. "Proton exchange for high‐index waveguides in LiNbO3." Applied Physics Letters 41.7 (1982): 607-608. [49] Vohra, Sandeep T., Alan R. Mickelson, and Sally E. Asher. "Diffusion characteristics and waveguiding properties of proton‐exchanged and annealed LiNbO3 channel waveguides." Journal of Applied Physics 66.11 (1989): 5161-5174. [50] Chanvillard, L., et al. "Soft proton exchange on periodically poled LiNbO3: A simple waveguide fabrication process for highly efficient nonlinear interactions." Applied Physics Letters 76.9 (2000): 1089-1091. [51] Chiang, Kin Seng, et al. "Refractive-index profiling of graded-index planar waveguides from effective indexes measured with different external refractive indexes." Journal of lightwave technology 18.10 (2000): 1412-1417. [52] Artiglia, M., et al. "Mode field diameter measurements in single-mode optical fibers." Journal of Lightwave Technology 7.8 (1989): 1139-1152. [53] Albert, Jacques, and Gar Lam Yip. "Insertion loss reduction between single-mode fibers and diffused channel waveguides." Applied optics 27.23 (1988): 4837-4843. [54] Kostritskii, S. M. "Photorefractive effect in LiNbO3-based integrated-optical circuits at wavelengths of third telecom window." Applied Physics B: Lasers and Optics 95.3 (2009): 421-428. [55] Boyd, Robert W. "Nonlinear optics." Handbook of Laser Technology and Applications (Three-Volume Set). Taylor & Francis, 2003. 161-183. [56] Bosenberg, Walter R., et al. "93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator." Optics letters 21.17 (1996): 1336-1338. [57] Becouarn, L., et al. "Cascaded second-harmonic and sum-frequency generation of a CO 2 laser by use of a single quasi-phase-matched GaAs crystal." Optics letters 23.19 (1998): 1508-1510. [58] Zhu, Shi-ning, Yong-yuan Zhu, and Nai-ben Ming. "Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice." Science 278.5339 (1997): 843-846. [59] Asobe, Masaki, et al. "Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure." Optics letters 28.7 (2003): 558-560. [60] Lai, Jui-Yu, et al. "Engineered multiwavelength conversion using nonperiodic optical superlattice optimized by genetic algorithm." Optics express 18.5 (2010): 5328-5337. [61] Gu, Ben-Yuan, et al. "Enhanced harmonic generation in aperiodic optical superlattices." Applied physics letters 75.15 (1999): 2175-2177. [62] Chou, P. Y., et al. "Two-dimensional aperiodic nonlinear photonic crystal in a dual-wavelength Nd: YVO4 laser for pulsed orange generation." Optics express 22.23 (2014): 28857-28864. [63] Chen, Y. H., et al. "Electro-optically tunable, multi-wavelength optical parametric generators in aperiodically poled lithium niobates." Optics express 20.27 (2012): 28989-29001. [64] Chung, H. P., et al. "Electro-optically spectrum tailorable intracavity optical parametric oscillator." Optics letters 40.22 (2015): 5132-5135. [65] Giordmaine, J. A., and Robert C. Miller. "Tunable coherent parametric oscillation in LiNbO3 at optical frequencies." Physical Review Letters 14.24 (1965): 973. [66] Myers, Lawrence E., et al. "Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3." Optics letters 21.8 (1996): 591-593. [67] Powers, P. E., Thomas J. Kulp, and S. E. Bisson. "Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design." Optics letters 23.3 (1998): 159-161. [68] Harris, Stephen E. "Tunable optical parametric oscillators." Proceedings of the IEEE 57.12 (1969): 2096-2113. [69] Krivoshchekov, G. V., et al. "Influence of the Electro-optical Effect on the Frequency of a Parametric Laser with a KDP Crystal." SOVIET PHYSICS JETP 28.3 (1969). [70] Lu, Yan-qing, et al. "Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect." Applied physics letters 74.1 (1999): 123-125. [71] O’Brien, Ned, et al. "Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator." Optics letters 24.23 (1999): 1750-1752. [72] Ngai, A. K. Y., et al. "Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection." Applied Physics B: Lasers and Optics 85.2 (2006): 173-180. [73] Yu, Chi-Sheng, and A. H. Kung. "Grazing-incidence periodically poled LiNbO3 optical parametric oscillator." JOSA B 16.12 (1999): 2233-2238. [74] Saikawa, Jiro, et al. "High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating." Optics letters 32.20 (2007): 2996-2998. [75] Chen, Yen-Hung, et al. "Spectral narrowing and manipulation in an optical parametric oscillator using periodically poled lithium niobate electro-optic polarization-mode converters." Optics letters 36.12 (2011): 2345-2347. [76] Heinrich, Wolfgang. "Quasi-TEM description of MMIC coplanar lines including conductor-loss effects." IEEE transactions on microwave theory and techniques 41.1 (1993): 45-52. [77] Marks, Roger B., and Dylan F. Williams. "Characteristic impedance determination using propagation constant measurement." IEEE Microwave and Guided Wave Letters 1.6 (1991): 141-143. [78] Ghione, Giovanni, et al. "Microwave modeling and characterization of thick coplanar waveguides on oxide-coated lithium niobate substrates for electrooptical applications." IEEE Transactions on microwave theory and techniques 47.12 (1999): 2287-2293. [79] Noguchi, K., H. Miyazawa, and O. Mitomi. "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti: LiNbO/sub 3/optical modulator." Electronics letters 34.7 (1998): 661-663. [80] Zhang, Jingjing, and Thomas Y. Hsiang. "Extraction of subterahertz transmission-line parameters of coplanar waveguides." Piers Online 3.7 (2007): 1102-1106. [81] Della Valle, G., et al. "Adiabatic light transfer via dressed states in optical waveguide arrays." Applied Physics Letters 92.1 (2008): 011106. [82] Paspalakis, Emmanuel. "Adiabatic three-waveguide directional coupler." Optics communications 258.1 (2006): 30-34. [83] Tseng, Shuo-Yen, and Yao-Wun Jhang. "Fast and robust beam coupling in a three waveguide directional coupler." IEEE Photonics Technology Letters 25.24 (2013): 2478-2481. [84] Wu, Che Wen, et al. "Photon pair generation and pump filtering in nonlinear adiabatic waveguiding structures." Optics letters 39.4 (2014): 953-956. [85] Salandrino, Alessandro, et al. "Analysis of a three-core adiabatic directional coupler." Optics Communications 282.23 (2009): 4524-4526. [86] Alferness, R. C., R. V. Schmidt, and E. H. Turner. "Characteristics of Ti-diffused lithium niobate optical directional couplers." Applied Optics 18.23 (1979): 4012-4016. [87] Oesterling, Lee, et al. "Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components." Journal of Modern Optics 62.20 (2015): 1722-1731. [88] Chung, H. P., et al. "Adiabatic light transfer in titanium diffused lithium niobate waveguides." Optics express 23.24 (2015): 30641-30650. [89] Schneider, Vitor Marino, and Haroldo T. Hattori. "Wavelength insensitive asymmetric triple mode evolution couplers." Optics communications 187.1 (2001): 129-133. [90] Becker, R. A., and R. C. Williamson. "Photorefractive effects in LiNbO3 channel waveguides: Model and experimental verification." Applied Physics Letters 47.10 (1985): 1024-1026. [91] Boyd, Robert W. "Nonlinear optics." Handbook of Laser Technology and Applications (Three-Volume Set). Taylor & Francis, 2003. 161-183. [92] Fejer, Martin M., et al. "Quasi-phase-matched second harmonic generation: tuning and tolerances." IEEE Journal of Quantum Electronics 28.11 (1992): 2631-2654. [93] Suhara, Toshiaki, and Hiroki Kintaka. "Quantum theory analysis of twin-photon beams generated by parametric fluorescence." IEEE journal of quantum electronics 41.9 (2005): 1203-1212. [94] Lenzini, Francesco, et al. "Direct characterization of a nonlinear photonic circuit's wave function with laser light." arXiv preprint arXiv:1703.01007 (2017). [95] James, Daniel FV, et al. "Measurement of qubits." Physical Review A 64.5 (2001): 052312. [96] Hong, C. K., Zhe-Yu Ou, and Leonard Mandel. "Measurement of subpicosecond time intervals between two photons by interference." Physical Review Letters 59.18 (1987): 2044. [97] Usmani, Imam, et al. "Heralded quantum entanglement between two crystals." Nature Photonics 6.4 (2012): 234-237. [98] Martin, Anthony, et al. "Integrated optical source of polarization entangled photons at 1310 nm." Optics express 17.2 (2009): 1033-1041. [99] Martin, Anthony, et al. "A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength." New Journal of Physics 12.10 (2010): 103005. [100] Suhara, Toshiaki. "Generation of quantum‐entangled twin photons by waveguide nonlinear‐optic devices." Laser & Photonics Reviews 3.4 (2009): 370-393. [101] Sharapova, P. R., et al. "Generation and active manipulation of qubits in LiNbO3-based integrated circuits." arXiv preprint arXiv:1704.03769 (2017). [102] Huang, C. Y., et al. "Electro-optic Ti: PPLN waveguide as efficient optical wavelength filter and polarization mode converter." Optics express 15.5 (2007): 2548-2554. [103] Chen, Xianfeng, et al. "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate." Optics letters 28.21 (2003): 2115-2117. [104] Yang Song-Lin, “Electro-Optically Switched Directional Couplers with Polarization-Mode Control in Periodically Poled Ti: LiNbO3 Waveguides.” 2013. Master Thesis. National Central University.
|