[1] http://scimonth.blogspot.tw/2014/12/blog-post_64.html?m=1
[2]E. Betzig, S. W. Hell, W. E. Moerner, The Nobel Prize In Chemistry (2014)
[3]T. Ha, P. Tinnefeld, “Photophysics of fluorescence probes for single molecule biophysics and super resolution imaging,” Annual Review Physical Chemistry 63(1), 595-617 (2012)
[4]P. D. Simonson, E. Rothenberg, P. R. Selvin, “Single-molecule-based super-resolution images in the prescence of multiple fluorophore,” Nano Letters 11, 5090-5096 (2011)
[5]S. A. Hussain, “An introduction to fluorescence resonance energy transfer(FRET)”
[6] D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Applied Physics Letters 44(7), 651-653 (1984)
[7]A. Harootunian, E. Betzig, M. Isaacson, A. Lewis. “Super-resolution fluorescence near-field scanning optical microscopy,” Applied Physics Letters 49(11), 674-676 (1986)
[8]Lipson S. G., Lipson H., Optical Physics, 4th edition, Cambridge University Press (2011).
[9] https://en.wikipedia.org/wiki/STED_microscopy
[10]Cornea A., Conn P. M., Fluorescence microscopy: Super-Resolution and other Novel Techniques, Academic Press, USA (2014).
[11]M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy”, Journal of Microscopy 198(2), 82-87 (2000)
[12]Bernard Valeur, Molecular Fluorescence Principles and Applications, Wiley-VCH, Weinheim (2002)
[13]Drude and Paul, “Zur Elektronentheorie der metalle” Annalen der Physik 306, 566 (1990)
[14]N. W. Ashcroft, N. D. Mermin, Solid State Physics, page 6
[15]M. A. Ordal, R. J. Bell, J. R. W. Alexader, L. L. Long, and M. R. Querry, “Optical Properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied Optics 24(24), 4493-4499 (1985)
[16]A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” Applied Optics 37(22), 5271-5283 (1998)
[17]D. Barchiesi and T. Grosges, “Fitting the Optical Constants of Gold, Silver, Chromium, Titanium, and Aluminum in the Visible Bandwidth,” Journal of Nanophotonics 8(1), 083097 (2014)
[18]P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Physical Review B 6(12), 4370-4379 (1972)
[19]R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum, ” Proceeding of the Physical Society 18, 269-275 (1902)
[20]U. Fano, “The theory of anomalous diffraction gratings and of quasistationary waves on metallic surfaces, ” Journal of the Optical Society of America 31, 213-222 (1941)
[21]R. H. Ritchie, “Plasma losses by fast electrons in thin films, ” Physical Review 106, 874-881 (1957)
[22]A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398-410 (1968)
[23]E. Kretschm and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light, ”Z. Naturf. 23A, 2135-2136 (1968)
[24]M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3(10), 793-796 (2006)
[25]M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angewandte Chemie International Edition 47, 6172-6176 (2008)
[26]E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 6172-6176 (2006)
[27]A. Burger, S. Letschert, S. Doose, M. Sauer, “Artifacts in single-molecule localization microscopy,” Histochemistry and Cell Biology 144(2), 123-131 (2015)
[28]Y. Feng, J. Goree, B. Liu, “Accurate position measurement from images” Review of Scince Instruments 78 (5), 053704 (2007)
[29]C. S. Smith, N. Joseph, B. Rieger, K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nature Methods 7, 373-375 (2010)
[30]M. P. Gordon, T. Ha, P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” Proc. Natl. Acad. Sci. 101(17), 6462-6465 (2004)
[31]P. D. Simonson, E. Rothenberg, P. R. Selvin, “Single-molecule-based super-resolution images in the presence of multiple fluorophores,” Nano Letters 11(11), 5090-5096 (2011)
[32]F. Huang, S. L. Schwartz, J. M. Byars, K. A.Lidke, “Simultaneous ,multiple-emitter fitting for single molecule super-resolution imaging,” Biomedical Optics Express 2, 1377-1393 (2011)
[33]P. Sarder, A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Processing Magazine 23(2), 32-45 (2006)
[34]E. A. Mukamel, H. Babcock, X. Zhuang, “Stastical deconvolution for supperresolution fluorescence microscopy,” Biophysical Journal 102, 2391-2400 (2012)
[35]L. Lucy, “An iterative technique for the rectification of observed distribution,” Astronomical Journal 79(6), 745-766 (1974)
[36]W. Richardson, “Bayesian-based iterative method of image restoration,” Optical Society of America 62(1), 55-59 (1972)
[37]L. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Transactions on Medical Imaging 1(2), 113-122 (1982)
[38]H. Sun, M. Yu, G. Wang, X. Sun, and J. Lian, “Temperature-Dependent Morphology Evolution and Surface Plasmon Absorption of Ultrathin Gold Island Films,” J. Phys. Chem. C 116(16), 9000-9008, 2012
[39]張勝涵,於離子交換波導表面組裝三角晶格之奈米粒子陣列實現具指向性中間解析之拉曼光譜,國立中央大學光電所碩士論文,中華民國一零五年六月[40]J. R. Lakowicz, “Radiative Decay Engineering 5: Metal-Enhanced Fluorescence and Plasmin Emission” Analytical Biochemistry 337, 171-194 (2005)
[41]J. R. Lakowicz, Y. Shen, S. D’Auria, J.Malicka, J. Fang, Z. Gryczynski, I. Gryczynski, “Radiative Decay Engineering 2: Effects of Silver Island Films on Fluorescence Intensity, Lifetimes, and Resonance Energy Transfer” Analytical Biochemistry 301, 261-277 (2002)