|
[1] A. J. Woods and T. Rourke, “Ghosting in anaglyphic stereoscopic images,” Proc. SPIE 5291, Stereoscopic Displays and Virtual Reality Systems XI, 354-365 (2004). [2] F. Matsuura and N. Fujisawa, “Anaglyph stereo visualization by the use of a single image and depth information,” J. Vis. 11, 79-86 (2008). [3] I. Ideses and L. Yaroslavsky, “New methods to produce high quality color anaglyphs for 3-D visualization,” International Conference Image Analysis and Recognition 3212, 273-280 (2004). [4] I. Ideses and L. Yaroslavsky, “Three methods that improve the visual quality of colour anaglyphs,” J. Opt. A: Pure Appl. Opt. 7, 755-762 (2005). [5] S. Erik, B. Sorensen, P. S. Hansen, and N. L. Sorensen, “Method for recording and viewing stereoscopic images in color using multichrome filters,” US Patent US 6687003 (2004). [6] H. Jorke, A. Simon, and M. Fritz, “Advanced stereo projection using interference filters,” J. Soc. Inf. Disp. 17, 407-410 (2009). [7] J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007). [8] P. J. Bos, and K. R. Koehler, “The pi-Cell: A Fast Liquid-Crystal Optical-Switching Device,” Mol. Cryst. Liquid Cryst. 113, 329-339 (1984). [9] Y. J. Wu, Y. S. Jeng, P. C. Yeh, C. J. Hu, and W. M. Huang, “20.2: Stereoscopic 3D display using patterned retarder,” SID Symp. Dig. Tech. Papers. 39, 260-263 (2008). [10] L. Bogaert, Y. Meuret, B. V. Giel, H. Murat, H. D. Smet, and H. Thienpont, “Projection display for the generation of two orthogonal polarized images using liquid crystal on silicon panels and light emitting diodes,” Appl. Opt. 47, 1535-1542 (2008) [11] L. Bogaert, Y. Meuret, B. V. Giel, H. D. Smet, and H. Thienport, “Design of a compact projection display for the visualization of 3-D images using polarization sensitive eyeglasses,” J. Soc. Inf. Disp. 17, 603-609 (2009). [12] W. Kruger, C. A. Bohn , B. Frohlich, H. Schuth, W. Strauss, and G. Wesche, “The Responsive Workbench: a virtual work environment,” Computer 28, 42-48 (1995). [13] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart, “The CAVE:Audio visual experience automatic virtual environment,” Commun. ACM 35, 64–73 (1992). [14] J. Leigh, A. Johnson, L. Renambot, T. DeFanti, M. Brown, B. Jeong, R. Jagodic, C. Krumbholz, D. Svistula, H. Hur, R. Kooima, T. Peterka, J. Ge, and C. Falk, “Emerging from the CAVE: Collaboration in ultra high resolution environments,” Proc. 1st Int. Symp. Universal Commun. 6, 2007-06 (2007). [15] V. Ferrari, G.Megali, E. Troia, A. Pietrabissa, and F. Mosca, “A 3-D mixed-reality system for stereoscopic visualization of medical dataset,” IEEE Trans. Biomed. Eng. 56, 2627-2633 (2009). [16] Sensics, “Sensics-Lightweight panoramic head-mounted displays,” Accessed Sep. 19, 2010. [Online]. Available: http://sensics.com/ [17] G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer-tracking autostereoscopic 3D display systems,’’ Proc. SPIE 3012, Stereoscopic Displays and Virtual Reality Systems IV, 187 (1997). [18] R. Y. Tsai, C. H. Tsai, K. Lee, C. L. Wu, L. C. D. Lin, K. C. Huang, W. L. Hsu, C. S. Wu, C. F. Lu, J. C. Yang, and Y. C. Chen, “Challenge of 3D LCD displays,’’ Proc. SPIE 7329, 732903 (2009). [19] Y. H. Tao, Q. H. Wang, J. Gu, W. X. Zhao, and D. H. Li, “Autostereoscopic three-dimensional projector based on two parallax barriers,” Opt. Lett. 34, 3220-3222 (2009). [20] H. Nishimura, T. Abe, H. Yamamoto, Y. Hayasaki, and N. Nishida, “Development of 140-inch autostereoscopic display by use of full-color led panel,’’ Proc. SPIE 6486, Light-Emitting Diodes: Research, Manufacturing, and Applications XI, 64861B (2007). [21] R. B. Johnson and G. A. Jacobsen, “Advances in lenticular lens arrays for visual display,’’ Proc. SPIE 5874, Current Developments in Lens Design and Optical Engineering VI, 587406 (2005). [22] D. K. G. deBoer, M. G. H. Hiddink, M. Sluijter, O. H. Willemsen, and S. T. de Zwart, “Switchable lenticular based 2D/3D displays,’’ Proc. SPIE 6490, Stereoscopic Displays and Virtual Reality Systems XIV, 64900R (2007). [23] Y. G. Lee and J. B. Ra, “Image distortion correction for lenticular misalignment in three-dimensional lenticular displays,” Opt. Eng. 45, 017007 (2006). [24] T. Ando, K. Mashitani, M. Higashino,H. Kanayama, H. Murata, Y. Funazou, N. Sakamoto, H. Hazama, Y. Ebara, and K. Koyamada, “Multiview image integration system for glassless 3D display,’’ Proc. SPIE 5664, Stereoscopic Displays and Virtual Reality Systems XII, 158–166 (2005). [25] K. Mashitani, G. Hamagishi, M. Higashino,T. Ando, and S. Takemoto, “Step barrier system multiview glassless 3D display,’’ Proc. SPIE. 5291, Stereoscopic Displays and Virtual Reality Systems XI, 265-272 (2004). [26] T. Endo, Y. Kajiki, T. Honda, and M. Sato, “Cylindrical 3D video display observable from all directions,’’ Proceedings the 8th Pacific Conference on Computer Graphics and Applications 2000, 300-306 (2000). [27] Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94, 654-663 (2006). [28] T. Baloch, “Method and apparatus for displaying three-dimensional images,” U.S. Patent US6201565 B1 (2001). [29] M. Sayinta, and H. Urey. “Scanning LED array based volumetric display,” Proc. IEEE 3DTV Conf., 1-4 (2007). [30] K. Maeno, N. Fukaya, O. Nishikawa, and T. Honda, “Electroholographic display using 15-megapixel LCD,” Proc. SPIE 2652, Practical Holography X, 15-23 (1996). [31] J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386 (2008). [32] S. Reichelt, R. Häussler, N. Leister, G. Futterer, and A. Shwerdtner “Large holographic 3D displays for tomorrow’s TV and monitors-solutions, challenges, and prospects,” LEOS 2008, 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 194-195 (2008). [33] R. Häussler, A. Schwerdtner, N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc. of SPIE 6803, Stereoscopic Displays and Applications XIX, 68030M (2008). [34] S. Reichelt, H. Sahm, N. Leister, and A. Schwerdtner, “Capabilities of diffractive optical elements for real-time holographic displays,” Proc. SPIE 6912, Practical Holography XXII: Materials and Applications, 69120P (2008). [35] A. Schwerdtner, R. Häussler, and N. Leister, “Large holographic displays for real-time applications,” Proc. of SPIE 6912, Practical Holography XXII: Materials and Applications, 69120T (2008). [36] N. Leister, A. Schwerdtner, G. Futterer, S. Buschbeck, J. C. Olaya, and S. Flon, “Full-color interactive holographic projection system for large 3D scene reconstruction,” Proc. SPIE 6911, Emerging Liquid Crystal Technologies III, 69110V (2008). [37] F. Yaraş, H. Kang, and L. Onural, “Circularly configured multi-SLM holographic display system,” 2011 IEEE 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, 1-4 (2011). [38] T. Kozacki, M. Kujawińska, G. Finke, B. Hennelly, and N. Pandey, “Extended viewing angle holographic display system with tilted SLMs in a circular configuration,” Appl. Opt. 51, 1771-1780 (2012). [39] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTiO3,” Appl. Phys. Lett. 9, 72-74 (1966). [40] F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niabate,” Appl. Phys. Lett. 13, 223-225 (1968). [41] F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389-3396 (1969). [42] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals I. Steady state,” Ferroelectrics 22, 949-960 (1979). [43] J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46-51 (1982). [44] P .Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quant. Electronics 25, 484-519 (1989). [45] A. Yariv and D. M. Pepper, “Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing,” Opt. Lett. 1, 16-18 (1977). [46] M. Cronin-Golomb, J. O. White, B. Fischer, and A. Yariv, “Exact solution of a nonlinear model of four-wave mixing and phase conjugation,” Opt. Lett. 7, 313-315 (1982). [47] R. A. Fisher, Optical Phase Conjugation (Academic Press, New York, 1983). [48] C. C. Sun, R. H. Tsou, W. Shen, H. H. Chang J. Y. Chang, and M. W. Chang, “Shearing interferometer with a kitty self-pumped phase-conjugate mirror,” Appl. Optics 35, 1815-1819 (1996). [49] W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for random-phase-encrypted volume holograms,” Appl. Optics 43, 1728-1733 (2004). [50] C. C. Sun, and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Optics 40, 1253-1260 (2001). [51] C. C. Sun, S. Yeh, M. W. Chang, and K. Y. Hsu, “Optimal incident conditions for a cat-type self-pumped phase-conjugate mirror,” Appl. Optics 31, 5769-5772 (1992). [52] B. Wang, C. C. Sun, W. C. Su, and A. E. Chiou, “Shift-tolerance property of an optical double-random phase-encoding encryption system,” Appl. Optics 39, 4788-4793 (2000). [53] W. C. Su, Y. W. Chen, Y. Ouyang, C. C. Sun, and B. Wang, “Optical identification using a random phase mask,” Opt. Commun. 219, 117-123 (2003). [54] C. C. Sun, W. C. Su, B. Wang, and A. E. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209-224 (2001). [55] H. F. Yao, H. C. Kung, H. Y. Lee, C. C. Sun, T. C. Chen, C. C. Chang, Y. P. Tong, and J. Chen, “Ordinary polarized phase conjugator using the photovoltaic effect,” Opt. Commun. 184, 257-263 (2000). [56] Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples”, Nat. Photonics 2, 110-115 (2008). [57] M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444-3455 (2010). [58] C. Yang and M. Cui, “Turbidity suppression by optical phase conjugation using a spatial light modulator,” California Institute of Technology, US Patent US8717574 B2 (2011). [59] Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence image with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012). [60] B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300-305 (2013). [61] K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657-661 (2012). [62] Y. M. Wang, and C. Yang, “Acoustic-assisted iterative wave form optimization for deep tissue focusing,” California Institute of Technology, US Patent US 20120070817 A1 (2012). [63] M. Jang, A. Sentenac, and C. Yang, “Optical phase conjugation (OPC)-assisted isotropic focusing,” Opt. Express 21, 8781-8792 (2013). [64] M. Cui and C.Yang, “Optical phase conjugation 4Pi microscope,” California Institute of Technology, US Patent US8830573 B2 (2014). [65] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583-10590 (2012). [66] I. N. Papadopoulos, S. Farahi, C. Moser, and Demetri Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4, 260-270 (2016). [67] C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283-12290 (2010). [68] I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012). [69] Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012). [70] D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2, 728-735 (2015). [71] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583-10590 (2012). [72] C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723-20731 (2010). [73] Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948). [74] E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,” J. Opt. Soc. Am. 52, 1123-1130 (1962). [75] E. N. Leith and J. Upatnieks, “Wavefront Reconstruction with Continuous-Tone Objects,” J. Opt. Soc. Am. 53, 1377-1381 (1963) [76] J. W. Goodman, Introduction to Fourier Optics (Mcgraw-Hill, New York, 1996). [77] J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486-488 (1982). [78] A.E. Chiou, T. Y. Chang, and M. Khoshnevisan, “High-speed photorefractive phase conjugator with large dynamic range and wide field of view,” OSA Annual Meeting 15, 40 (1990). [79] A. E. Chiou, “Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of microscopic objects,” Proc. IEEE 87, 2074-2085 (1999). [80] P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328-1330 (2013). [81] J. J. Zheng, G. Pedrini, P. Gao, B. L. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Optics 17, 085301 (2015). [82] C. Gu and P. Yeh, “Partial phase conjugation, fidelity, and reciprocity,” Opt. Commun. 107, 353-357 (1994).
|