跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 20:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹皓勛
研究生(外文):Hao-Xun Zhan
論文名稱:利用角度偏折量測法之成像系統Abbe正弦條件量測
論文名稱(外文):Sine Condition Test by Angular Deflectometry
指導教授:梁肇文
指導教授(外文):Chao-Wen Liang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:70
中文關鍵詞:光學元件檢測Abbe正弦條件角度偏折量測法
外文關鍵詞:optical testingAbbe sine conditionangular deflectometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文有兩大主題,第一為提出使用線掃描法取代相移法之角度偏折量測法,第二為應用角度偏折量測法於成像系統Abbe正弦條件之量測。
在2015年本實驗室曾提出使用相移法之角度偏折量測法,其使用現成的雷射投影機檢測成像系統之橫向像差,本篇論文則提出以權重重心理論及線掃描的方式取代原本的相移量測,此量測方式以較多的量測時間,解決了前者量測結果誤差受雷射投影機之有限灰階值影響的問題。
本篇論文的第二部分探討成像系統其違反Abbe正弦條件的誤差量,和與物場呈線性之離軸像差,兩者之間的關係,並引入前一部分探討之角度偏折量測法,以角解析度達角秒等級精確度量測物空間及像空間各光線向量,並探討系統之校準誤差和計算之與物場呈線性之離軸像差關係。
There are two main topics in this paper: the advanced angular deflectometry with line scanning and centroid method and the application of angular deflectometry to the Abbe sine condition test.
In our previous publications, we successfully made a deflectometry measurement using a portable laser projector. In this study, we propose the beam weighting centroid method instead of the phase-shifting method to quantify the angular direction of the testing beam in the tested optics entrance pupil. By projecting the angular sequential lines on the tested optics entrance pupil, the wavefront aberration is reconstructed from two orthogonal direction measurements similarly to the line-scanning deflectometry. Therefore, the limited grayscale problem of the laser projector during the phase-shifting measurement is eliminated. The reconstructed wavefront is proven to yield a more accurate result than the phase-shifting methods at the cost of more image frames and acquisition time.
With the on-axis deflectometry measurement using a laser projector, which is called angular deflectometry, we discuss the relation between the Abbe sine condition violation and the linear field dependent aberrations because of the pupil mapping error of the image system. Then, we apply the angular deflectometry measurement to the sine condition test, which can measure the ray angles in the object and image space with arc-second order precision. Finally, we examine the relation between linear field dependent aberrations and the system misalignment.
摘要 I
English Abstract II
Table of Contents III
List of Figures V
List of Tables VIII
1 Introduction 1
1-1 Deflectometry history 1
1-2 Sine condition test history 2
1-3 Research motivation 3
2 Aberration and measurement theory 5
2-1 Focal plane measurement methods and principle 5
2-2 Zernike polynomials and gradient Zernike polynomials 7
2-3 Laser projector system 9
2-4 Gaussian beam propagation 9
2-5 Angular line-scanning deflectometry 11
2-6 Deference between angular and spatial deflectometry 13
2-7 Abbe sine condition and offense against the sine condition 15
2-8 Vector form of the OSC and pupil mapping error 16
2-9 Sine condition test prior art 20
IV
3 Multiple-line-scanning deflectometry experiment 22
3-1 Limited grayscale capability of the laser projector 22
3-2 Elements in the measurement system 24
3-3 Line-scanning measurement process 25
3-4 Building the four-dimensional ray data 27
3-5 Multiple-line-scanning deflectometry 31
3-6 Comparison of the test result with the simulation 34
3-7 Test results of PSD, single LSD and multiple LSD 35
4 Sine condition test experiment 37
4-1 Angular deflectometry system 37
4-2 Measurement processing 38
4-3 Testing result for the misalignment system 46
4-4 CodeV simulation for the misalignment system 49
5 Discussion and summary 56
5-1 Angular line-scanning deflectometry 56
5-2 Sine condition test by angular deflectometry 57
REFERENCE 58
[1] P. Su, R. E. Parks, L. Wang, R. P. Angel, and J. H. Burge, “Software configurable optical test system: a computerized reverse Hartmann test,” Applied Optics, Vol. 49, pp. 4404-4412, 2010.
[2] P. Su, S. Wang, M. Khreishi, Y. Wang, T. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, Modern Technologies in Space- and Ground-based Telescopes and Instrumentation II, 84500W, September 13, 2012.
[3] P. Su, Y. Wang, J. H. Burge, K. Kaznatcheev, and M. Idir, “Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach,” Optics Express, Vol. 20, pp. 12393-12406, 2012.
[4] P. Su, M. Khreishi, R. Huang, T. Su, and J. H. Burge, “Precision aspheric optics testing with SCOTS: a deflectometry approach,” Proc. SPIE 8788, Optical Measurement Systems for Industrial Inspection VIII, 87881E, May 13, 2013.
[5] T. Bothe, W. Li, C. von Kopylow, and W. P. O. Juptner, “High-resolution 3D shape measurement on specular surfaces by fringe reflection,” Proc. SPIE 5457, Optical Metrology in Production Engineering, 411, September 10, 2004.
[6] W. Jüptner, and T. Bothe, “Sub-nanometer resolution for the inspection of reflective surfaces using white light,” Proc. SPIE 7405, Instrumentation, Metrology, and Standards for Nanomanufacturing III, 740502, August 20, 2009.
[7] G.P. Butel, G. A. Smith, and J. H. Burge, “Deflectometry using portable devices,” Optical Engineering, Vol. 54(2), 025111, February 17, 2015.
[8] G. P. Butel, G. A. Smith, and J. H. Burge, “Binary pattern deflectometry,” Applied Optics, Vol. 53, pp. 923-930, 2014.
[9] M. C. Knauer, J. Kaminski, and G. Hausler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, Optical Metrology in Production Engineering, 366, September 10, 2004.
[10] J. W. Chen, C. W. Liang, and S. H. Chen, “Wavefront measurement made by an off-the-shelf laser-scanning pico projector,” Applied Optics, Vol 54, pp. E235-E240, 2015.
[11] W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. Vol. 70, pp. 998-1006, 1980.
[12] H. X. Zhan, C. W. Liang, and S. C. Chien, “Line scanning deflectometry using a laser pico projector,” Proc. SPIE 9960, Interferometry XVIII, 99600O, August 28, 2016.
[13] E. Abbe, “Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Archiv fuer mikroskopische Anatomie 9,” pp. 413-468, 1873.
[14] G. D. Wasserman, and E. Wolf, “On the theory of aplanatic aspheric systems,” Proc. Phys. Soc. B 62, pp. 2-8, 1949.
[15] L. Mertz, “Geometrical design for aspheric reflecting systems,” Applied Optics, Vol. 18, pp. 4182-4186, 1979.
[16] J. H. Burge, and J. R. P. Angel, “Wide field telescope using spherical mirrors,” Proc. SPIE 5174, pp. 83-92, 2004.
[17] B. McLeod, “Collimation of fast wide-field telescopes,” Publ.Astron. Soc. Pac. 108, pp. 217–219, 1996.
[18] L. Noethe, “Final alignment of the VLT,” Proc. SPIE 4003, pp. 382–390, 2000.
[19] H. Lee, “Optimal collimation of misaligned optical systems by concentering primary field aberrations,” Optics Express, Vol. 18, pp. 19249–19262, 2010.

[20] R. Tessieres, “Analysis for Alignment of Optical Systems”, University of Arizona, 2003.
[21] J.H. Burge, C. Zhao, M.B. Dubin, and S. Lampen, “Determination of off-axis aberrations of imaging systems using on-axis measurements,” Proc. SPIE 8129, Novel Optical Systems Design and Optimization XIV, 81290F, 2011.
[22] S. Lampen, M.B. Dubin, and J.H. Burge, “Implementation of sine condition test to measure optical system misalignments,” Applied Optics, Vol. 50, pp. 6391-6398, 2011.
[23] J. H. Burge, C. Zhao, and M. B. Dubin, “Use of the Abbe Sine Condition to Quantify Alignment Aberrations in Optical Imaging Systems,” in International Optical Design Conference and Optical Fabrication and Testing, OSA Technical Digest (CD), Optical Society of America, 2010.
[24] S. Lampen, M.B. Dubin, and J.H. Burge, “Use of a flat panel display for measurement of sine condition violations.” Proc. SPIE 8491, Optical System Alignment, Tolerancing, and Verification VI, 84910F, 2012.
[25] J. C. Wyant, and K. Creath, “Basic Wavefront Aberration Theory for Optical Metrology,” Applied Optics and Optical Engineering, Vol.XI, 13-14, 1992.
[26] I. Ghozeil, D. Malacara, “Chapter 13. Zernike Polynomial and Wavefront Fitting,” in Optical Shop Testing 3rd edition, pp. 498-546, 2007.
[27] J.Wyant, and K. Creath, "Basic wavefront aberration theory for optical metrology," Applied Optics, Vol. XI, pp. 28-34, 1992.
[28] M. Niesten, T. Masood, J. Miller, J. Tauscher, “Scanning laser beam displays based on a 2D MEMS,” Proc. SPIE 7723, Optics, Photonics, and Digital Technologies for Multimedia Applications, 77230U, May 05, 2010.
[29] B. Saleh, and M. Teich, “Chapter 3. Beam optics,” in Fundamentals of Photonics, pp. 80-93, 1991
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top