跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:石邱毅
研究生(外文):Chiu-Yi Shih
論文名稱:磁控濺鍍法製作高品質多晶砷化鎵薄膜 之研究
論文名稱(外文):Fabrication of High Quality Polycrystalline Gallium Arsenide Thin Films by Magnetron Sputtering Deposition
指導教授:陳昇暉曹昭陽曹昭陽引用關係
指導教授(外文):Sheng-Hui ChenChao-Yang Tsao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:116
中文關鍵詞:磁控濺鍍砷化鎵薄膜
外文關鍵詞:Magnetron Sputtering DepositionGallium Arsenide Thin Films
相關次數:
  • 被引用被引用:3
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用磁控濺鍍法在鍺矽基板上生長高品質多晶砷化鎵薄膜,藉著磁控濺鍍沉積大面積製程,且在磊晶過程中不會使用有毒氣體等優勢,但較難磊晶成長,所以著重於薄膜生長之研究,若能成功於鍺矽基板生長高品質砷化鎵薄膜,就能取代機械強度較弱與成本較高的鍺晶圓。我們藉由基板溫度、濺鍍功率以及氫氣流量製程參數的調變,成功於鍺矽基板生長高品質多晶砷化鎵薄膜,由於氫能與砷化鎵薄膜鍵結形成(H-Ga, H-As)而減少缺陷結構,最後藉由熱退火製程使晶格重新排列,讓薄膜結構更為完整,且降低了表面粗糙度。本實驗使用Raman(拉曼光譜)、XRD(X射線繞射)、EBSD(電子背向散射繞射)、TEM(穿透式電子顯微鏡)、AFM(原子力顯微鏡)進行量測分析與討論。
In this study, high-quality polycrystalline gallium arsenide thin films have been grown on the germanium silicon substrates by using a magnetic sputtering method. The advantages of the sputtering method were it is a low-cost and secure process method to replace the expensive and fragile germanium wafer by the germanium silicon one. The high-quality polycrystalline gallium arsenide films can be grown on the germanium silicon substrates by odjusting the substrate temperature, sputtering power, and hydrogen flow during the process. After the process, Raman spectrometer, XRD, EBSD, TEM and AFM were used to analyze the properties of crystallization.
目錄
摘要 I
Abstract VI
致謝 VII
目錄 VIII
圖目錄 XI
表目錄 XVI
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 4
1-3論文架構 6
第二章 文獻回顧 7
2-1砷化鎵薄膜材料特性與應用 7
2-2砷化鎵薄膜之生長機制 9
2-3砷化鎵薄膜之製程方法比較 10
2-4濺鍍法製作砷化鎵薄膜之研究文獻 11
2-5相關砷化鎵磊晶薄膜之研究文獻 12
第三章 實驗流程與實驗設備 14
3-1 實驗流程 14
3-2 濺鍍設備 (RF Sputtering) 15
3-3 熱退火製程 (Thermal annealing) 17
3-4 X射線繞射儀 (X-Ray Diffraction, XRD) 17
3-5 拉曼光譜儀 (Raman scattering) 19
3-6 電子背向散射繞射 (Electron backscatter diffraction, EBSD) 20
3-7 原子力顯微鏡 (Atomic-force microscopy, AFM) 22
第四章 砷化鎵薄膜濺鍍磊晶與分析 24
4-1 改變基板對砷化鎵薄膜之影響 24
4-1-1 Raman 量測結果分析 25
4-1-2 XRD 量測結果分析 27
4-1-3 EBSD 量測結果分析 29
4-1-4 TEM 量測結果分析 32
4-1-5 AFM 量測結果分析 33
4-2 改變基板溫度對砷化鎵薄膜之影響 37
4-2-1 Raman 量測結果分析 37
4-2-2 XRD 量測結果分析 39
4-2-3 AFM 量測結果分析 42
4-3 改變濺鍍功率對砷化鎵薄膜之影響 45
4-3-1 Raman 量測結果分析 45
4-3-2 XRD 量測結果分析 47
4-3-3 EBSD 量測結果分析 49
4-3-4 AFM 量測結果分析 51
4-4改變氫氣流量對砷化鎵薄膜之影響 55
4-4-1 Raman 量測結果分析 55
4-4-2 XRD 量測結果分析 58
4-4-3 EBSD 量測結果分析 60
4-4-4 AFM 量測結果分析 63
第五章 熱退火優化砷化鎵薄膜 67
5-1 熱退火實驗流程 67
5-2 不同溫度熱退火對砷化鎵(不通氫)薄膜影響 68
5-2-1 OM 量測結果分析 68
5-2-2 SEM 量測結果分析 69
5-2-3 Raman 量測結果分析 70
5-2-4 XRD 量測結果分析 72
5-2-5 AFM 量測結果分析 74
5-3 不同溫度熱退火對砷化鎵(通氫)薄膜影響 78
5-3-1 OM 量測結果分析 78
5-3-2 SEM 量測結果分析 79
5-3-3 Raman 量測結果分析 81
5-3-4 XRD 量測結果分析 83
5-3-5 EBSD 量測結果分析 85
5-3-6 AFM 量測結果分析 87
第六章 結論與未來工作 91
6-1 結論 91
6-2 未來工作 92
參考文獻 94
參考文獻
1. 美國太陽能發電工業會:摘自濱川圭弘 JSAP-International, NO.5p.31
2. 楊德仁,“太陽能電池材料Solar Cell Materials”,五南圖書版公司
3. NREL Best Research-Cell Efficiencies,
Available from: https://www.nrel.gov/pv/assets/images/efficiency-chart.png
4. 24
.
5% Eciency Silicon PERT
Cells on MCZ Substrates and
24
.
7% Eciency PERL Cells
on FZ Substrates
4. 24
.
5% Eciency Silicon PERT
Cells on MCZ Substrates and
24
.
7% Eciency PERL Cells
on FZ Substrates
4. J. Zhao, A. Wang and Martin A. Green, “ 24· 5% Efficiency silicon PERT cells on MCZ substrates and 24· 7% efficiency PERL cells on FZ substrates ” Progress in Photovoltaics: Research and Applications, (1999) P. 471-474.
5. K. Wakisaka, M. Taguchi, T. Sawada, M. Tanaka, T. Matsuyama, T. Matsuoka, S. Tsuda, S. Nakano, Y. Kishi and Y. Kuwano. “ More than 16% solar cells with a new HIT (doped a-Si/nondoped a-Si/crystalline Si) structure ” , Conference Record of the Twenty Second IEEE. (1991)
6. Kunta Yoshikawa, Hayato Kawasaki, Wataru Yoshida, Toru Irie, Katsunori Konishi, Kunihiro Nakano, Toshihiko Uto, Daisuke Adachi, Masanori Kanematsu, Hisashi Uzu and Kenji Yamamoto. “ Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion e ciency over 26% ” Conference Record of nature energy. volume: 2 | article number: 17032 (2017)
7. Philip Jackson, Roland Wuerz, Dimitrios Hariskos, Erwin Lotter, Wolfram Witte, and Michael Powalla “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%” Status Solidi RRL 10, No. 8, 583–586 (2016)
8. Michael Saliba, Taisuke Matsui,Konrad Domanski, Ji-Youn Seo, Amita Ummadisingu, Shaik M. Zakeeruddin, Juan-Pablo Correa-Baena, Wolfgang R. Tress, Antonio Abate, Anders Hagfeldt, Michael Grätzel “Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance” Science 14 Oct 2016 Vol. 354, Issue 6309, pp. 206-209
9. 翁敏航.楊茹媛.管鴻.晁成虎,“太陽能電池-原理、元件、材料、製程與檢測技術 ”台灣東華書局股份有限公司
10. Kayes BM, Nie H, Twist R, Spruytte SG, Reinhardt F, Kizilyalli IC, “ Higashi GS. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination” IEEE Photovoltaic Specialists Conference (2011)
11. Sharp IMM triple-junction compound solar cell,
Available from: http://sharp-world.com/corporate/news/130424.html
12. P. Chiu, D. Law, R. Woo, S. Singer, D. Bhusari, W. Hong, A. Zakaria, J. Boisvert, S. Mesropian and R. King. “35.8% space and 38.8% terrestrial 5J direct bonded cells. in Photovoltaic Specialist Conference (PVSC) ” 2014 IEEE 40th.
13. Frank Dimroth, Thomas N. D. Tibbits, Markus Niemeyer, Felix Predan, Paul Beutel, Christian Karcher, Eduard Oliva, Gerald Siefer, David Lackner, Peter Fuß-Kailuweit, Andreas W. Bett, Rainer Krause, Charlotte Drazek, Eric Guiot, Jocelyne Wasselin, Aurelie Tauzin, and Thomas Signamarcheix “Four-Junction Wafer-Bonded Concentrator Solar Cells” IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 6, NO. 1, JANUARY 2016
14. Tandem Cells,
Available from: http://www.pveducation.org/pvcdrom/solar-cell-operation/ tandem-cells
15. David Forbes and Seth Hubbard “Solar-cell-efficiency enhancement using nanostructures” SPIE 10.1117/2.1201007.003124
16. Woodall Research,
Available from: http://woodall.ece.ucdavis.edu/resources/
17. 楊德仁,“太陽能電池材料”五南圖書出版股份有限公司
18. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson “COHERENT LIGHT EMISSION FROM GaAs JUNCTIONS” PHYSICAL REVIEW LETTERS VoLUME 9.NUMBER 9.NOVEMBER 1, 1962
19. Nick Holonyak, Jr. and S. F. Bevacqua “COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1_xP x) JUNCTIONS”APPLIED PHYSICS LETTERS, Volume 1, Number 4, 1 December 1962
20. D. A. JENNY, J.J. LOFERSKI, AND P. RAPPAPORT “Photovoltaic Effect in GaAs p-n Junctions and Solar Energy Conversion*” VOLUME 101, NUMBER 3. PHYSICAL REVIEW. FEBRUARY 1, 1956Edward D. Palik and Edward D. Palik “ Handbook of Optical Constants of Solids” ISBN: 978-0-08-054721-3(1985)
21. “ From Principles of Electronic Materials and Devices” Third Edition, S.O. Kasap (McGraw-Hill, 2005)
22. S. Herman, Richter, Epitaxy, 2004.
23. 田民波,“材料學概論”台灣五南圖書出版股份有限公司
24. J.M. Woodall and H.J. Hovel “High-efficiency Gal-X Alx As-GaAs solar cells” Citation: Appl. Phys. Lett. 21, 379 (1972); doi: 10.1063/1.1654421
25. 黃惠良.曾百亨,“太陽電池” 五南圖書出版股份有限公司
26. 翁敏航.楊茹媛.管鴻.晁成虎,“太陽能電池-原理、元件、材料、製程與檢測技術 ”台灣東華書局股份有限公司
27. 林明獻,“太陽電池技術入門”全華圖書股份有限公司
28. 李正中,“薄膜光學與鍍膜技術”藝軒圖書出版社
29. E. Bauer, Transacti01zs “The Nintlz National Vacuum Symposium” (The Macmillan Company, New York, 1962), p. 35.
30. D. W. Pashley, Advan. Phys. 5, 173 (1956).
31. M. H. Francombe, J. J. Flood, and G. L'E. “Turner, Fifth International Congress for Electron Microscopy” PMladelphia, 1962, Vol. I, p. DD-8; M. H. Francombe, Transactions, Tlte Tentle National Vacuum Symposium (The Macmillan Company, New York, 1963), p. 316.
32. B. Molnar, J. J. Flood, and M. H. Francombe. Journal of Applied Physics 35, 3554 (1964); doi: 10.1063/1.1713269
33. H. Reuter, H. Schmitt, M. Biiffgen “Properties of sputtered amorphous and microcrystalline GaAs films” Thin Solid Films 254 (1995) 96- 102
34. Jean-Lx Seguin, Benachir El Hadadi, Hem Carchano, Abdelhak Fennouh,
Khalifa Aguir “ High-temperature sputtered amorphous GaAs” Journal of Non-Crystalline Solids 183 (1995) 175-181
35. E. P. O'Reilly. J. Robertson “Electronic structure of amorphous III-V and II-VI compound semiconductors and their defects” VOLUME 34, NUMBER 12(Received 22 August 1986)
36. R.R. Campomanes , J. Ugucione, J.H. Dias da Silva “ Low temperature annealing of amorphous gallium arsenide films” Journal of Non-Crystalline Solids 304 (2002) 259–264
37. R.R. Campomanes a, J.H. Dias da Silva a, J. Vilcarromero a, L.P. Cardoso b “Crystallization of amorphous GaAs films prepared onto different substrates” Journal of Non-Crystalline Solids 299–302 (2002) 788–792
38. G. de M. Azevedo a, J.H. Dias da Silva b, E. Avendan˜o a,c “Effect of hydrogenation on the optical and structural properties of GaAs thin films prepared by rf-magnetron sputtering” Nuclear Instruments and Methods in Physics Research B 238 (2005) 329–333
39. R.M. SIEG, S.A. RINGEL, S.M. TING, E.A. FITZGERALD, and R.N. SACKS“Anti-Phase Domain-Free Growth of GaAs on Offcut (001) Ge Wafers by Molecular Beam Epitaxy with Suppressed Ge Outdiffusion” Journal of Electronic Materials, Vol. 27, No. 7, 1998
40. Yury Buzynin, Vladimir Shengurov, Boris Zvonkov, Alexander Buzynin, Sergey Denisov, Nikolay Baidus, Michail Drozdov, Dmitry Pavlov, and Pavel Yunin “GaAs/Ge/Si epitaxial substrates: Development and characteristics” AIP Advances 7, 015304 (2017)
41. Masahiro AKIYAMA, Yoshihiro KAWARADA and Katsuzo KAMINISHI “Growth of Single Domain GaAs Layer on (100)-Oriented Si Substrate by MOCVD” JAPANESE JOURNAL OF APPLIED PHYSICS VOL.23, NO. 11, NOVEMBER,1984
42. J. C. Chen,M. Ladle Ristow,J. I. Cubbage,J. G. Werthen“GaAs/Ge heterojunction grown by metal-organic chemical vapor deposition and its application to high efficiency photovoltaic devices” Journal of Electronic Materials March 1992, Volume 21, Issue 3, pp 347–353
43. S.K. Agarwal, R. Tyagi, M. Singh, R.K. Jain “Effect of growth parameters on the MOVPE of GaAs/Ge for solar cell applications” Solar Energy Materials & Solar Cells 59 (1999) 19-26
44. R. TYAGI, M. SINGH, M. THIRUMAVALAVAN, T. SRINIVASAN, and S.K. AGARWAL “The Influence of As and Ga Prelayers on the Metal-Organic Chemical Vapor Deposition of GaAs/Ge” Journal of ELECTRONIC MATERIALS, Vol. 31, No. 3, 2002
45. Guy Brammertz, Yves Mols, Stefan Degroote, Maarten Leys, Jan Van Steenbergen, Gustaaf Borghs, Matty Caymax “Selective epitaxial growth of GaAs on Ge by MOCVD ” Journal of Crystal Growth 297 (2006) 204–210
46. J.Z. Li , J. Bai, J.M. Hydrick, J.S. Park, C. Major, M. Carroll, J.G. Fiorenza, A. Lochtefeld “Growth and characterization of GaAs layers on polished Ge/Si by selective aspect ratio trapping” Journal of Crystal Growth 311 (2009) 3133–3137
47. Wei-Cheng Kuo, Hung-Chi Hsieh, Wu Chih-Hung, Huang Wen-Hsiang, Chien-Chieh Lee, and Jenq-Yang Chang “High Quality GaAs Epilayers Grown on Si Substrate Using 100 nm Ge Buffer Layer” Hindawi Publishing Corporation International Journal of Photoenergy Volume 2016, Article ID 7218310, 5 pages
48. Zhou Xuliang , Pan Jiaoqing , Liang Renrong , Wang Jing , and Wang Wei “Epitaxy of GaAs thin film with low defect density and smooth surface on Si substrate” IOPscience 2014 J. Semicond. 35 073002
49. L.I. Maissel, in: L.I. Maissel, R. Glang (Eds.) “Handbook of Thin Films Technology” Mc Graw-Hill, New York, 1970.
50. H.J. kang, Y.M. Moon, J. Vac. Sci. Technol. A 7 (1998) 3251–3255.
51. 李正中,“薄膜光學與鍍膜技術”藝軒圖書出版社
52. Masafumi Yamaguchi, Masami Tachikawa, Yoshio Itoh, Mitsuru Sugo, and Susumu Kondo “Thermal annealing effects of defect reduction in GaAs on Si substrates” Journal of Applied Physics 68, 4518 (1990); doi: 10.1063/1.346156
53. J. D. OBERSTAR* “ Thin film encapsulants for annealing GaAs and InP
” Thin Solid Films, 103 (1983) 17-26
54. Verhoeven, J.D. “ Fundamentals of Physical Metallurgy” , Wiley, New York, 1975, p. 326
55. 楊富量,nano 奈米通訊 2008.12 15卷 NO.4 ,財團法人國家實驗研究院奈米元件實驗室出版委員會
56. 莫定山,“ Raman 光譜原理及應用” 崑山科技大學電子工程系
57. 黃宏勝、林麗娟,“FE-SEM/CL/EBSD簡介”檢測技術在奈米科技之應用專題
58. 黃英碩,“掃描探針顯微術的原理及應用(Scanning Probe Microscopy: Principles and Applications) ”
59. I.D.Desnica , M. Ivanda , M. Kranjcec , R. Murri , N.Pinto , “Raman study of gallium arsenide thin films”, Journal of Non-Crytalline Solids 170 (1994) 263-269
60. YANG Di, SUN Mengli, YUAN Wei, DU Xin, PENG Haibo, WANG Tieshan, GUO Hongxia “ Study on photoluminescence and Raman scattering in GaAs by ion irradiation”(2016)
61. 潘漢昌,“精密儀器中心簡訊”,63 8(2004)
62. R. Murri, L. Schiavulli, N. Pinto, and T. Ligonzo, J. Non-Cryst. “Urbach tail in amorphous gallium arsenide films” Solids 139, 60 (1992)
63. E. C. Freeman and W. Paul, Phys. Rev. B 20, 716 (1979)
64. U. Coscia, R. Murri, N. Pinto, and L. Trojani, J. Non-Cryst. “Photoconductivity of amorphous GaAs” Solids 194,103 (1996).
65. 楊德仁,“太陽能電池材料”五南圖書出版股份有限公司
66. 陳冠翔,“在矽基板上成長單晶鍺薄膜與矽鍺薄膜之研究”,國立中央大學碩士論文 (2014)
67. Lazzarini L, Nasi L, Salviati G, Fregonara C Z, Li Y, Giling J J, Hardingham C and Holt D B 2000 Micron 31 217
68. Hudait M K and Krupanidhi S B 2000 Mater. Res. Bull. 25 125
69. Li Y and Giling J J 1996 J. Cryst. Growth 163 203
70. Tyagi R, Singh M, Thirumavalavan M, Srinivasan T and Agarwal S K 2002 J. Electron. Mater. 31 234
71. Strite S, Biswas D, Adomi K and Morkoc H 1990 J. Appl. Phys. 67 1609
72. Chen J C, Ladle Ristow M, Cubbage J I and Werthen J G 1992 J. Electron. Mater. 21 347
73. Hudait M K, Modak P, Hardikar S, Rao K S R K and Krupanidhi S B 1998 Mater. Sci. Eng. B 55 53
74. Agarwal S K, Tyagi R, Singh M and Jain R K 1999 Sol. Energy Mater. Sol. Cells 59 19
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top