跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 11:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡慶璇
研究生(外文):Ching-Shiuan Tsai
論文名稱:特殊光譜燈具設計及其量產設計之研究
論文名稱(外文):Design of an LED Luminaire with Specific Spectrum and the Mass Production Study
指導教授:孫慶成孫慶成引用關係楊宗勳楊宗勳引用關係
指導教授(外文):Ching-Cherng SunTsung-Hsun Yang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:86
中文關鍵詞:LED燈具燈具設計照度均勻度
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究與設計一盞完整特殊光譜燈具,作為動植物生長所需。我們從探討光源波長之選用開始,進行燈具之光形與散熱之研究。為使本燈具具有量產的可行性,我們也進行燈殼之設計,並提出一套製作流程。在模擬設計中,我們分析線陣列、面陣列以及同心圓陣列此三種光源陣列分布方式的優缺點。我們以六盞實驗燈具置於特殊長寬高與水深為24 cm之水缸體上方,並在距離光源幾個特殊距離上,分析光形分布及其照度。我們在最後製作一盞燈具成品並進行設計的驗證。
In this thesis, we studied and designed a luminaire with specific spectrum for plant growth or others. We started from selecting light source with specific wavelength, and then design the required light pattern and study thermal dissipation. In considering the mass production, we designed the housing structure, and proposed a manufacture process. In the optical simulation, we analyzed the geometry for light source location, including line, plane and concentric shapes. We made six luminaires, and put them at different distances above the surface of the water tank, where the depth of the water was 24 cm. We studied the light distribution and illuminance across the water tank. Finally, we made a well-finished luminaire to verify the design.
中文摘要 I
目錄 IV
圖索引 IX
表索引 XIV
第一章 緒論 1
1-1 研究動機與目的 1
1-2 特殊光譜燈具之介紹 2
1-3 論文大綱及架構 7
第二章 基本原理 9
2-1 光度學及輻射學 9
2-2 電路基本原理 14
第三章 特殊光譜燈具之模擬設計 16
3-1 光源之波長選取 16
3-2 三種光源陣列方式之光學模擬 17
3-3 光源及完整燈具之光學模擬 21
3-3-1 僅有LED光源情況之光學模擬分析 23
3-3-2 完整燈具之光學模擬 25
3-4 完整燈具用於有水缸體之光學模擬 31
3-5 結論 38
第四章 特殊光譜燈具製作及實驗量測驗證 39
4-1 電路設計及配置 39
4-2 電路板製作之流程 41
4-3 燈具製作與檢測流程 44
4-4 燈具散熱效果之照度及溫度實際量測 45
4-5 燈具驗證與分析 50
4-6 燈具量產設計 55
4-7 結論 57
第五章 結論 59
參考文獻 61
中英文名詞對照表 65

[1] T. R. Malthus, An Essay on the Principle of Population (J. Johnson, London, 1798).
[2] X. S. Liu, A. Vedlitz, and L. Alston, “Regional news portrayals of global warming and climate change,” Environ. Sci. Policy 11, 379-393 (2008).
[3] A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting (John Wiley & Sons, NEW York, 2002).
[4] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[5] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005).
[6] F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[7] Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, by US Department of energy.
[8] D. Sun, “Challenges and opportunities for high power white LED development,” DOE SSL R&D Workshop (2012).
[9] J. C. Yu, Z, Y, Chen, and B, D, Kao, “Optical design and optimization of planar curved LED end-lit light bar,” Appl. Opt. 53, H67-H75 (2014).
[10] X. H. Lee, I. Moreno, and C, C, Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express 21, 10612-10621 (2013).
[11] D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry (Macmillan, 1970).
[12] C. L. Comar and F. P. Zscheile, “Spectroscopic analysis of plant extracts for chlorophylls a and b,” Plant Physiol. 16, 651-653 (1941).
[13] C. L. Comar and F. P. Zscheile, “Analysis of plant extracts for chlorophylls a and b by a photoelectric spectrophotometric method,” Plant Physiol. 17, 198-209 (1942).
[14] Z. Y. Ma, H. Shimizu, S. Moriizumi, M. Miyata, M. Douzono, and S. Tazawa, “Effect of light intensity, quality and photoperiod on stem elongation of chrysanthemum cv. Reagan,” Environ. Control Biol. 45, 19-25 (2007).
[15] H. M. Cathey and H. A. Borthwick, “Photoreactions controlling flowering of chrysanthemum morifolium (Ramat. and Hemfl.) illuminated with fluorescent lamps,” Plant Physiol. 45, 235-239 (1970).
[16] K. E. Cockshull and A. P. Hughes, “The effects of light intensity at different stages in flower initiation and development of chrysanthemum morifolium,” Ann. Bot. 35, 915-926 (1971).
[17] M. G. Blanchard and E. S. Runkle, “Use of a cyclic high-pressure sodium lamp to inhibit flowering of chrysanthemum and velvet sage,” Sci. Hortic. 122, 448-454 (2009).
[18] M. Appelgren, “Effects of light quality on stem elongation of pelargonium in vitro,” Sci. Hortic. 45, 345-351 (1991).
[19] B. Viorel, Modeling Solar Radiation at the Earth Surface (Springer, 2008).
[20] 億展光電科技, http://www.ledworld.tw/products_show.php?dmrecno=7987.
[21] 凱創光電科技有限公司, http://www.kaichgd.com/zwscd.html.
[22] ATLEDTiS Limited, https://www.atledtis.com/blank-1.
[23] National Electrical Manufacturers Association, ANSI/IEC 60529-2004 : Degrees of Protection Provided by Enclosures (IP Code) (NEMA, Virginia, 2004).
[24] 謝豪晃, 洪偉竣, 許純嘉, 盧佩佳, 賴辰瑋, 巴溫篤, “Effect of different light-emitting diode (LED) sources on laying interval and egg quality of laying hens,” 中國畜牧學會會誌 42, 319-328 (2013).
[25] 台北市立動物園, http://www.zoo.gov.taipei/.
[26] N. Mihailov, D. Todorov, and L. Iliev, “Investigation of an efficient poultry lighting solution,” 2014 18th International Symposium on Electrical Apparatus and Technologies (SIELA), 1-4 (2014).
[27] G. Tosini and R. Avery, “Spectral composition of light influences thermoregulatory behaviour in a lacertid lizard (podarcis muralis),” J. Therm. Biol. 21, 191-195 (1996).
[28] V. N. Mahajan, Optical Imaging and aberration : Part Ⅰ Ray Geometrical Optics (SPIE Press, Washington,1998).
[29] 孫慶成,光電工程概論,初版,全華圖書股份有限公司,新北市,中華民國一百零一年。
[30] Commission internationale de l'éclairage, CIE Publication NO. 86 : CIE 1988 2∘spectral luminous efficiency function for photopic vision (CIE, 1998).
[31] A. S. Sedra and K. C. Smith, Microelectronic Circuits, 4th ed. (Oxford University Press, Oxford, 1998).
[32] Prolight Opto Technology Corporation, http://www.prolightopto.com/.
[33] Breault Research Organization, Inc., http://www.breault.com/.
[34] R. J. Bula, R. C. Morrow, T. W. Tibbitts, D. J. Barta, R. W. Ignatius, and T. S. Martin, “Light-emitting diodes as a radiation source for plants,” Hortscience 26 , 203-205 (1991).
[35] J. B. Lund, T. J. Blom, and J. M. Aaslyng, “LED lighting in horticulture,” Hortscience 42, 1947-1950 (2007).
[36] G. D. Goins, N. C. Yorio, M. M. Sanwo, and C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48, 1407-1413 (1997).
[37] R. C. Jao, C. C. Lai, W. Fang, and S. F. Chang, “Effects of red light on the growth of Zantedeschia plantlets in vitro and tuber formation using light-emitting diodes,” Hortscience 40, 436-438 (2005).
[38] R. C. Morrow, “LED lighting in horticulture,” Hortscience 43, 1947-1950 (2008).
[39] K. Ohashi-Kaneko, R. Matsuda, E. Goto, K. Fujiwara, and K. Kurata, “Growth of rice plants under red light with or without supplemental blue light,” Soil Sci. Plant Nutr. 52, 444-452 (2006).
[40] G. D. Massa, H. H. Kim, R. M. Wheeler, and G. A. Mitchell, “Plant productivity in response to LED lighting,” Hortscience 43, 1951-1956 (2008).
[41] K. M. Folta and K. S. Childers, “Light as a growth regulator : controlling plant biology with narrow-bandwidth solid-state lighting systems,” Hortscience 43, 1957-1964 (2008).
[42] H. Li, Z. Xu, and C. Tang, “Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro,” Plant Cell Tissue Organ Cult. 103, 155-163 (2010).
[43] A. Shimada and Y. Taniguchi, “Red and blue pulse timing control for pulse width modulation light dimming of light emitting diodes for plant cultivation,” J. Photochem. Photobiol. B-Biol. 104, 399-404 (2011).
[44] R. Paradisoa, E. Meinenb, J. F. H. Snelb, P. D. Visserb, W. V. Ieperenc, S. W. Hogewoningc, and L. F.M. Marcelisb, “Spectral dependence of photosynthesis and light absorptance in single leaves and canopy in rose,” Sci. Hortic. 127, 548-554 (2011).
[45] K. J. McCree, “The action spectrum, absorptance and quantum yield of photosynthesis in crop plants,” Agric. Meteorol. 9, 191-216 (1972).
[46] K. J. McCree, “Test of current definitions of photosynthetically active radiation against leaf photosynthesis data,” Agric. Meteorol. 10, 443-453 (1972).
[47] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region, ” Opt. Lett. 31, 2193-2195 (2006).
[48] J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill,1996).
[49] Rhinoceros by Robert McNeel & Associates, https://www.rhino3d.com/.
[50] Illuminating Engineering Society of North America, The IESNA Lighting handbook : reference and application, 9th ed. (IESNA, New York, 2000).
[51] 李宣皓,表面微結構擴散片設計、製作與應用,國立中央大學光電科學與工程學系博士論文,中華民國一百零一年。
[52] KiCad Developers Team, http://kicad-pcb.org/.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top