跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/12 09:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃柏詠
研究生(外文):Bo-Yong Huang
論文名稱:單光子放射顯微鏡系統之校正與成像模型建立
論文名稱(外文):System Calibration and Imaging Model Construction of Single Photon Emission Microscope
指導教授:陳怡君陳怡君引用關係
指導教授(外文):Yi-Chun Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:102
中文關鍵詞:單光子放射顯微鏡幾何校正成像模型
外文關鍵詞:SPEMGeometric calibrationimaging model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
為了提高重建影像的品質,本論文利用單光子放射顯微鏡系統(SPEM)作為影像擷取系統,此系統為一種高空間解析度的單光子放射電腦斷層掃描系統(SPECT),當中包括針孔式準直儀、碘化銫閃爍晶石、光影像縮倍管(DM tube)與電子增益電荷耦合元件(EMCCD)。
在影像重建的過程中,最重要的一步為建立影像系統矩陣(H矩陣),而為了獲得良好的系統矩陣,本論文利用系統幾何校正(System Geometric Calibration)與成像模型建立(Imaging Model Construction)來得到SPEM的影像系統矩陣。在幾何校正實驗中,利用三個點射源作各角度之投影影像,利用影像之投影重心找出在偵測器座標系中針孔及旋轉軸所在位置,並藉由針孔及旋轉軸所在位置與格點掃描實驗之實驗結果建立成像模型,此成像模型包含通量模型與寬度模型,最後利用此成像模型便可得到視域空間中的影像系統矩陣。
在影像重建實驗中以Tc-99m藥劑注入假體中,以SPEM擷取各角度之投影影像,並將影像系統矩陣與投影影像代入序列子集期望值最大化演算法(OSEM)中,最後重建出三維物體影像。
This study utilizes a single photon emission microscope (SPEM), which is a high spatial resolution version of single photon emission computed tomography (SPECT) system, to acquire projection images for tomographic reconstructions. The imaging system consists of a 7-pinhole collimator, a thallium activated cesium iodide [CsI(Tl)] columnar scintillator, a de-magnifier tube (DM-tube) and an electron multiplying charge-coupled device (EMCCD).
To obtain high quality images, an accurate imaging system matrix, also called H matrix, is indispensable in the image reconstruction process. Two procedures are implemented to build the H matrix of SPEM, including the system geometric calibration and imaging model construction. A three-point phantom filled with Tc-99m pertechnetate solution is rotated to acquire 64 projections. The projection centroids are utilized to estimate the geometric parameters of SPEM, such as the axis of rotation (AOR) and pinhole positions. A grid-scan experiment with a single point source is performed to provide point response functions for constructing the imaging model, including the flux and width models. A complete H matrix is then generated according to the geometric parameters and imaging models.
Projections of the three-point phantom and resolution phantom are acquired to evaluate the system performance. The reconstructed images demonstrate the feasibility of the system calibration procedures. Renovations of the instrument shielding is in progress to allow proper object positioning and achieving full resolution capability of SPEM.
目錄
中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構 2
第二章研究背景 4
2.1核子醫學影像 4
2.1.1 正子放射斷層掃描系統(Positron Emission Tomography, PET) 5
2.1.2 單光子放射電腦斷層掃描系統(Single-Photon Emission Computed Tomography, SPECT) 8
2.1.3單光子放射顯微鏡(Single Photon Emission Microscope, SPEM) 10
2.2準直儀(Collimator) 12
2.3 伽瑪射線偵測器(Gamma Detector) 14
2.3.1半導體式偵測器(Semiconductor detector) 14
2.3.2 閃爍晶體偵測器(Scintillation Detector) 15
第三章系統校正與影像重建原理 22
3.1影像系統矩陣與高斯內插結合幾何參數法 22
3.1.1 格點掃描實驗(Grid-scan Experiment) 23
3.1.2 高斯內插結合幾何參數法(Gaussian Interpolation Method Combined With Geometric Parameter Estimations, GIMGPE) 24
3.2系統校正與成像模型建立 28
3.2.1 幾何校正(Geometric Calibration) 28
3.2.2 簡化格點掃描實驗(Simplified Grid-scan Experiment) 30
3.2.3 建立成像模型(Imaging Model Construction) 31
3.3影像重建演算法 33
3.3.1最大可能性之期望值最大化演算法(Maximum Likelihood Expectation Maximization, MLEM) 35
3.3.2序列子集之期望值最大化演算法(Order Subset Expectation Maximization, OSEM) 37
3.4儀控程式 38
第四章實驗與結果 43
4.1系統設置 43
4.1.1實驗架設構造之鉛箱限制 46
4.2幾何校正實驗與結果 47
4.3簡易格點掃描實驗 51
4.4 成像模型建立 63
4.4.1通量模型 63
4.4.2寬度模型 66
4.4.3成像模型 68
4.5 影像重建結果 69
4.5.1三點假體影像重建結果 69
4.5.2假體影像重建結果 74
第五章結論與未來展望 79
參考文獻 83
參考文獻
[1] S. R. Cherry and S. S. Gambhir, “Use of positron emission tomography in animal research,”ILAR Journal, vol. 42, no. 3, pp. 219-232, 2001.
[2] Available:https://zh.wikipedia.org/wiki/X%E5%B0%84%E7%BA%BF
[3] M. N. Wernick and J. N. Aarsvold, Emission Tomography: The Fundamentals ofPET and SPECT, Elsevier Academic Press, London, 2004.
[4] M. A. D. Reis, J. Mejia, I. R. Batista, M. R. F. F. D. Barboza, and S. A. Nogueira, et al., “SPEM: A state-of-the-art instrument for high resolution molecular imaging of small animal organs”SciELO Einstein (São Paulo), vol. 10, no. 2, pp. 209-215, 2012.
[5] J. Mejia, M.A. Reis, A.C.C. Miranda, I.R. Batista, andM.R.F.Barboza, et al.,“Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs”SciELOBrazilian Journal of Medical and Biological Research, vol. 46, no. 11, pp. 936-942, 2013.
[6] Available: http://nsspi.tamu.edu/nssep/courses/basic-radiation-detection/semiconductor-detectors/introduction/introduction
[7] T. E. Schlesinger, J. E. Toney, H. Yoon, E. Y. Lee, and B. A. Brunett, et al., “Cadmium zinc telluride and its use as a nuclear radiation detector material”ElsevierMaterials Science and Engineering: R: Reports, vol. 32, no. 4-5, pp. 103-189, 2001.
[8] A.P. Dhanasopon, C.S. Levin, A.M.K. Foudray, P.D. Olcott, J.A. Talcott, and F. Habte, “Scintillation crystal design features for a miniature gamma ray camera”IEEE Nuclear Science Symposium Conference Record, vol. 5 pp. 1967-1971, 2003.
[9] M. A. kupinski and H. H. Barrett, Small-Animal SPECT Imaging, Springer, New York, 2005.
[10] C. Fiorini, A. Longoni, F. Perotti, C. Labanti, P. Lechner, and L. Strüder, “Gamma ray spectroscopy with CsI(Tl) scintillator coupled to silicon drift chamber”IEEE Transactions on Nuclear Science, vol. 44, no. 6, pp. 2553-2560, 1997.
[11] Available: https://www.hamamatsu.com/resources/pdf/etd/H8500_H10966_TPMH1327E.pdf
[12] Available: http://www.ysctech.com/digital-microscope-CCD-camera-info.html
[13] Available: http://hamamatsu.magnet.fsu.edu/articles/emccds.html
[14] Available: http://www.teo.com.tw/prodDetail_print.asp?id=733
[15] L. J. Meng, N. H. Clinthorne, S. Skinner, R. V. Hay, and M. Gross, “Design and feasibility study of a single photon emission microscope system for small animal I-125 imaging”IEEE Transactions on Nuclear Science, vol. 53, no. 3, pp. 1168-1178, 2006.

[16] L. J. Meng, “An intensified EMCCD camera for low energy gamma ray imaging applications” IEEE Transactions on Nuclear Science, vol. 53, no. 4, pp.2376-2384, 2006.
[17] H. H. Barrett, and K. J. Myers, Foundations of Image Science, Wiley Interscience, Hoboken, N. J., 2004.
[18] M. W. Lee, and Y. C. Chen, “Rapid construction of pinhole SPECT system matrices by distance-weighted Gaussian interpolation method combined with geometric parameter estimations” Elsevier Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 737, pp. 122-134, 2014.
[19] Y. Wang, and B. M. W.Tsui, “Pinhole SPECT with different data acquisition geometries:usefulness of unified projection operators in homogeneous coordinates”IEEE Transactions on Medical Imaging, vol. 26, no. 3, pp. 298-308, 2007.
[20] F. V. D. Have, B. Vastenhouw, M. Rentmeester, and F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT”IEEE Transactions on Medical Imaging, vol. 27, no. 7, pp. 960-971, 2008.
[21] L. A. Shepp, and Y. Vardi, “Maximum likelihood reconstruction for emission tomography”IEEE Transactions on Medical Imaging, vol. 1, no. 2, pp. 113-122, 1982.
[22] H. M. Hudson, and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data” IEEE Transactions on Medical Imaging, vol. 13, no. 4, pp. 601-609, 1994.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top