跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 01:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林柏毅
研究生(外文):Po-Yi Lin
論文名稱:裝置間通訊環境下服務品質導向之資源及功率分配演算法研究
論文名稱(外文):QoS-Oriented Resource and Power Allocations in Device-to-Device Communication Environment
指導教授:林嘉慶林嘉慶引用關係
指導教授(外文):Jia-Chin Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:50
中文關鍵詞:裝置間通訊資源分配功率分配服務品質
外文關鍵詞:Device-to-DeviceResource AllocationPower AllocationQuality of Service
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
  近年來,隨著行動通訊技術的發展,人們對於行動通訊的需求日益增加,行動裝置的數量也呈現爆炸性的成長。過多的裝置用戶進行通訊也會造成中心網路壅塞的情形產生,因此不必透過基地台幫忙的裝置間通訊(Device-to-Device, D2D)被視為下世代通訊發展的重要技術。
  在本篇論文當中,我們探討裝置間通訊資源分配問題。為了能夠使資源頻譜能夠有效地被利用,我們讓裝置間通訊用戶和蜂巢式通訊用戶進行非正交資源共享,將裝置間通訊用戶所需要的服務品質視為取得資源的順序。此演算法讓一個蜂巢式通訊用戶能夠和兩個裝置間通訊用戶共享資源,由於在同一個資源塊上有多個通訊用戶存在,會造成訊號互相干擾問題,此演算法亦透過功率的調配處理此問題,保障裝置間用戶的通訊品質,同時確保蜂巢式通訊用戶最低的訊號傳輸功率。本研究論文的目標為將裝置間通訊用戶的系統傳輸吞吐量優化,並且提高裝置間通訊用戶的服務品質滿意度。
  在模擬過程中,我們也將此演算法和隨機演算法及貪婪演算法做比較。研究結果顯示,此演算法能夠提高裝置間通訊用戶的系統傳輸吞吐量,並且能讓用戶端有較高的服務品質滿意度,其表現結果皆優於隨機演算法及貪婪演算法。
In recent years, due to the revolution of communication technology, Requirements for mobile communication has been increasing day after day. The amount of user equipment will be growing explosively, which cause congestion problems for the central network when there are abundant users trying to communicate at the same time. Therefore, D2D that can transmit data directly without assistance of eNodeB is becoming the critical part of communication in next generation.
In this thesis, we discuss the issue of resource allocation in D2D communication underlying cellular networks. To make resource utilized effectively, non-orthogonal sharing mode is adopted. The eNodeB allocates resources according to the quality of service of each DUE. The proposed algorithm has a CUE share resources with two pairs of DUE, dealing with the severe mutual interference among the different users via power coordination. It can sustain the communication quality of DUE and ensure the basic transmit power of CUE simultaneously. The purpose of this thesis is to optimize the throughput as well as to enhance the service satisfaction degree of D2D.
We compare the proposed method to random and greedy algorithms, and numerical results show that the proposed algorithm can increase the throughput and obtain higher user satisfaction degree in D2D communication.
第一章 緒論___________________________________________1
 1.1 背景與討論______________________________________1
 1.2 研究動機及目的_________________________________3
 1.3 論文架構_______________________________________4
第二章 裝置間通訊介紹_______________________________5
 2.1 裝置間直接通訊_________________________________5
 2.2 直接通訊無線資源管理__________________________9
 2.3 訊號干擾問題__________________________________10
 2.4 文獻探討______________________________________13
第三章 模擬系統架構________________________________15
 3.1 LTE環境架構__________________________________15
 3.2 模擬環境______________________________________18
 3.3 無線通道模型__________________________________19
第四章 服務品質導向資源及功率分配演算法__________25
 4.1 服務品質分類及使用者滿意度__________________25
 4.2 服務品質導向資源及功率分配演算法___________26
 4.3 比較演算法介紹________________________________31
第五章 模擬結果與討論_______________________________32
 5.1 模擬環境和參數_________________________________32
 5.2 模擬結果分析__________________________________33
第六章 結論__________________________________________36
參考文獻_______________________________________________37

圖 2.1 傳統蜂巢式通訊示意圖___________________________6
圖 2.2 LTE系統下的裝置間通訊示意圖__________________7
圖 2.3 LTE下行系統共用之異質干擾____________________10
圖 2.4 LTE上行系統共用之異質干擾____________________11
圖 3.1分時長期演進無線訊框架構______________________15
圖 3.2分頻長期演進無線訊框架構______________________16
圖 3.3 LTE上行資源網格_______________________________17
圖 3.4系統架構圖_____________________________________18
圖 4.1演算法流程圖___________________________________30
圖 5.1 D2D數量和其系統吞吐量之比較圖______________33
圖 5.2 D2D數量和其平均為差滿意度之比較圖_________34
圖 5.3 D2D傳輸距離和其系統中滿意度比值之分析圖___35

表 2.1藍芽、Wi-Fi及D2D通訊技術比較表_______________6
表 3.1 LTE規格參數____________________________________17
表 3.2不同環境的路徑損耗指數________________________22
表 4.1服務品質需求比較表_____________________________25
表 5.1系統模擬參數表__________________________________32
[1] E. Hossain, M. Rasti, H. Tabassum, and A. Abdelansser, “Evolution toward 5G multi-tier cellular wireless networks: An interference management perspective,” IEEE Wireless Communications, vol21, no.3, pp.118-127, Jun. 2014.
[2] G. Wunder, H. Boche, T. Strohmer, and P. Jung, “Sparse Signal Processing Concepts for Efficient 5G System Design,” IEEE Access, vol 3, pp.195-208, Feb. 2015.
[3] K. Doppler, M. Rinne, C. Wijting, C. B. Ribeiro, and K. Hugl, “Device-to-device communication as an underlay to LTE-advanced networks,” IEEE Commun. Mag., vol. 47, no. 12, pp. 42-49, Dec. 2009.
[4] X. Shen, “Device-to-Device Communication in 5G Cellular Networks,” IEEE Network, vol.29, no. 2, pp. 2-3, Mar.-Apr. 2015.
[5] P. J̈anis, C.-H. Yu, K. Doppler, C. Ribeiro, C. Wijting, K. Hugl, O. Tirkkonen, and V. Koivunen, “Device-to-Device communication underlaying cellular communications systems, ” International Journal of Communications Network and System Sciences, vol.2, no. 3, pp.169–178, 2009.
[6] M. J. Yang, Y. L. Soon, J. P. Hong, and H. P. Nam, “Solving the data overload: Device-to-device bearer control architecture for cellular data offloading,”IEEE Vehicular Technology Magazine. , vol. 8, issue. 1, pp31-39, 2013.
[7] 3GPP TR 22.803, “Feasibility study for Proximity Services (ProSe) (Release 12),”.
[8] 3GPP TR 23.703,“Study on architecture enhancements to support Proximity Services (ProSe) (Release 12),”.
[9] MCC Support, “Final report of 3GPP TSG RAN WG1 #79 v1.0.0,” pp. 21-40, San Francisco, USA, Nov. 2014.
[10] L. Wei, R. Q. Hu, Y. Qian, and G. Wu, “Enable Device-to-Device communications underlaying cellular networks: challenges and research aspects,” IEEE Communications Magazine, vol. 52, issue. 6, pp. 90-96, 2014.
[11] M. Zulhasnine, C. Huang, and A. Srinivasan, “Efficient resource allocation for device-to-device communication underlaying LTE network,” in IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications, 2010.
[12] S. Xu, H. Wang, T. Chen, Q. Huang, and T. Peng, “Effective interference cancellation scheme for device-to-device communication underlaying cellular networks,” in Proc. IEEE Vehi. Tech. Conf. Fall, pp. 1-5, 2010.
[13] X. Lin, J. Andrews, A. Ghosh, and R. Ratasuk, “An overview of 3GPP device-to-device proximity services,” IEEE Commun. Mag., vol. 52, no. 4, pp. 40-48, Apr. 2014.
[14] C. H. Yu, O. Tirkkonen, K. Doppler, and C. Ribeiro, “On the performance of Device-to-Device underlay communication with simple power control,” in Proc. IEEE VTC, pp. 1-5, Apr. 2009.
[15] H. Xing and S. Hakola, “The investigation of power control schemes for a device-to-device communication integrated into OFDMA cellular system,” IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications, 2010.
[16] M. C. Erturk, S. Mukherjee, H. Ishii, and H. Arslan, “Distributions of transmit power and SINR in device-to-device networks,” in Proc. IEEE Commun. Lett., vol. 17, no. 2, pp. 273-276, Dec. 2013.
[17] C.-H. Yu, O. Tirkkonen, K. Doppler, and C. Ribeiro, “Power optimization of device-to-device communication underlaying cellular communication,”. IEEE ICC, pp. 1-5, 2009.
[18] G. Fodor and N. Reider, “A distributed power control scheme for cellular network assisted D2D communications,” in Proc. IEEE GLOBECOM, pp. 1-6, Dec. 2011.
[19] Y. Tao, J. Sun, and S. Shao, “Radio resource allocation based on greedy algorithm and successive interference cancellation in Device-to-Device communication,” in Proc. Information and Communications Technologies (IETICT 2013), pp. 452-458, 2013.
[20] H. Sun, M. Sheng, X. Wang, Y. Zhang, J. Liu, and K. Wang, “Resource allocation for maximizing the Device-to-Device communication underlaying LTE-Advanced networks,” in Proc. Communications in China – Workshops (CIC/ICCC 2013), pp.60-64, 2013.
[21] C. Li, B. Li, B. Lan, Y. Zhang, and T. Wang, “Uplink power control for Device-to-Device communication underlaying cellular networks,” in Proc. Communications and Networking in China (CHINACOM), 2013 8th International ICST, pp. 256-259, 2013.
[22] H. Sun, M. Sheng, X. Wang, Y. Zhang, J. Liu, and K. Wang, “Resource allocation for maximizing the device-to-device communications underlaying LTE-advanced networks,” IEEE/CIC International Conference on Communications in China-Workshops (ICCC), pp. 60-64, 2013.
[23] Y.-T. Sun, D. Samadhiya, Y.-H. Tsai and J.-C. Lin, “Resource allocation algorithm based on user satisfaction in D2D communication,” Int. J. Explor. in Eng. & Tech, vol. 2, no. 1, pp. 52-55, Feb. 2016.
[24] X. X. Wang and Z. Yuan, “An Interference Coordination Scheme for Device-to-Device Multicast in Cellular Networks,” Vehicular Technology Conference IEEE, pp.1-5, 2012.
[25] C.-S. Lin, and J.-C, Lin, “Handover in vehicular communication networks,” in Proc. ITS Telecommunications (ITST 2011), pp. 590-595, 2011.
[26] “Selection procedures for the choice of radio transmission technologies of the UMTS,” 3GPP TR 30.03U, version 3.2.0, 1998.
[27] Q. Chen, S. Zhao, and S. Shao, “QoS-based Resource Allocation Scheme for Device-to-Device (D2D) Communication Underlaying Cellular Network in Uplink,” IEEE International Conference on Signal Processing Communication and Computing, pp. 1-4, 2013.
[28] J.-S. Wu, S.-F. Yang, C.-M. Hsu, J.-Y. Tu, and J.-R. Jiang, “User satisfaction-based scheduling algorithm for uplink transmission in long tern evolution system,” in Proc.Parallel and Distributed Systems (ICPADS 2012), pp. 930-935, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊