|
[1] Y. Hua, K. Alahari, C. Schmid, “Occlusion and motion reasoning for long-term tracking,” in Proc. European Conference on Computer Vision, Vol. 8694, p.172-187, Sep. 2014. [2] S. Kwak, W. Nam, B. Han, J. Hee Han, “Learning occlusion with likelihoods for visual tracking,” in Proc. IEEE International Conference on Computer Vision, pp. 1551-1558, Nov. 2011. [3] C. Ma, X. Yang, C. Zhang, M. Yang, “Long-term correlation tracking,” in Proc. IEEE International Conference on Computer Vision and Pattern Recognition, pp. 5388-5396, June. 2015. [4] Y. Wu, T. Yu, G. Hua, “Tracking appearances with occlusions,” Computer Vision and Pattern Recognition, 2003. in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, p.789-795, June. 2003. [5] W. Bouachir, G. Bilodeau, “Structure-aware keypoint tracking for partial occlusion handling,” in Proc. IEEE International Winter Conference on Applications of Computer Vision, p.877-884, March. 2014. [6] W. Kloihofer, M. Kampel, “Interest Point Based Tracking,” in Proc. IEEE International Conference on Pattern Recognition , pp. 3549-3552, Aug. 2010. [7] S. Gao, Z. Han, D. Doermann, J. Jiao, “Depth Structure Association for RGB-D Multi-Target Tracking,” in Proc. IEEE International Conference on Pattern Recognition, p. 4152-4157, Aug. 2014. [8] H. Bay, A. Ess, T. Tuytelaar, and L. Van Gool, “SURF: speeded up robust features,“ Computer Vision and Image Understanding, Vol. 110, No. 3, pp. 346-359, June. 2008. [9] Y. Boers, J. N. Driessen, “Interacting multiple model particle filter,“ IEE Proceedings - Radar, Sonar and Navigation, Vol. 150, No. 8, pp. 344-349, Oct. 2003. [10] A. Yilmaz, O. Javed, M. Shah, “Object tracking: A survey,” ACM computing surveys, Vol. 38, No. 13, Article 13, Dec. 2006. [11] N. J. Gordon; D. J. Salmond; A. F. M. Smith, "Novel approach to nonlinear/non-Gaussian Bayesian state estimation." IEE Proceedings F - Radar and Signal Processing, Vol. 140, p.107-113, April. 1993. [12] Bishop, Gary, G. Welch, “An introduction to the Kalman filter,” Technical Report TR 95-041, University of North Carolina, Department of Computer Science, 1995. [13] Z. Jiang, D. Q. Huynh, W. Moran, S. Challa, “Tracking pedestrians using smoothed colour histograms in an interacting multiple model framework,“ in Proc. IEEE International Conference on Image Processing , p. 2313-2316, Sept. 2011 [14] M. S. Arulampalam; S. Maskell; N. Gordon; T. Clapp, “A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans. signal processing, Vol. 50, No. 2, p.174-188, Feb. 2002. [15] K. Nummiaro, E. Koller-Meier, L. Van Gool, ”A color-based particle filter,” Image and Vision Computing, Vol. 21, No. 1, p. 99-110, Jan. 2003. [16] H. A. P. Blom, Y. Bar-Shalom, “The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficients,“ IEEE Trans. Automatic Control, Vol. 33, No. 8, pp. 780-783, Aug. 1988. [17] J. Wang, D. Zhao, W. Gao, S. Shan, "Interacting multiple model particle filter to adaptive visual tracking," in Proc. IEEE International Conference on Image and Graphics, pp. 568-571, Dec. 2004. [18] D. Ta, W. Chen, N. Gelfand, K. Pulli, “SURFTrac: Efficient tracking and continuous object recognition using local feature descriptors,“ in Proc. IEEE International Conference on Computer Vision and Pattern Recognition , pp. 2937-2944, June. 2009. [19] Z. Qi, R. Ting, F. Husheng, Z. Jinlin, “Particle Filter Object Tracking Based on Harris-SIFT Feature Matching,“ in Proc. International Workshop on Information and Electronics Engineering, Vol. 29, pp. 924-929, Jan. 2012. [20] X. Lu, J. Zhang, L. Song, R. Lei, H. Lu, N. Ling, “Particle filter vehicle tracking based on surf feature matching,“ IEEJ Journal of Industry Applications, Vol. 3, No. 2, pp. 182-191, March. 2014. [21] K. Ratnayake, M. Amer, “Object tracking with adaptive motion modeling of particle filter and support vector machines,” in Proc. IEEE International Conference on Image Processing, p. 1140-1144, Sept. 2015. [22] M. Yazdian-Dehkordi, Z. Azimifar, “Adaptive visual target detection and tracking using incremental appearance learning,” in Proc. IEEE International Conference on Image Processing, p. 1041-1045, Sept. 2015. [23] S. Shantaiya, K. Verma, K. Mehta, “Multiple object tracking using kalman filter and optical flow,” European Journal of Advances in Engineering and Technology, 2015. [24] X. Lu, J. Zhang, L. Song, R. Lei, H. Lu, N. Ling, “Person Tracking with Partial Occlusion Handling,“ in Proc. IEEE International Workshop on Signal Processing Systems , pp. 14-16, Oct. 2015. [25] J.-Y. Lu, Y.-C. Wei, C.-W. Tang, “Visual tracking using compensated motion model for mobile cameras,“ in Proc. IEEE International Conference on Image Processing , pp. 489-492, Sept. 2011. [26] J. Ferryman; A. Shahrokni “A. PETS2009: Dataset and challenge,” in Proc. IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, p. 1-6, Dec. 2009. [27] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, K. Schindler, “MOT16: A Benchmark for Multi-Object Tracking,” in Proc. IEEE International Conference on Computer Vision and Pattern Recognition, May. 2016. [28] CAVIARDATA Dataset: http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/ [29] Y. Wu, J. Lim, M. Yang, “Online object tracking: A benchmark." in Proc. IEEE International Conference on Computer Vision and Pattern Recognition, p.2411-2418, June. 2013. [30] C. Bao, Y. Wu, H. Ling, and H. Ji, “Real Time Robust L1 Tracker Using Accelerated Proximal Gradient Approach,” in Proc. IEEE International Conference on Computer Vision and Pattern Recognition, p.1830-1837, June. 2012. [31] H. Ling, L1_APG (Matlab, ~40M with data), the code implement the L1-APG http://www.dabi.temple.edu/~hbling/code_data.htm
|