[1] 臺灣能源統計年報,2014,http://web3.moeaboe.gov.tw/.
[2] Annual Energy Outlook,2015,http://www.eia.gov/todayinenergy/
[3] United Nations Climate Change Conference,2015,http://www.cop21.gouv.fr/.
[4] 黃惠良,曾百亨,太陽電池,五南出版社,民國97 年12 月。
[5] 顧鴻濤,太陽能電池元件導論,全威圖書有限公司,台北,民國97 年。
[6] Swanson, “A vision for crystalline silicon photovoltaics”, Progress in Photovoltaics, Vol. 14, pp. 443-453, 2006.
[7] H. Sakata and M. Tanaka, “Sanyo’s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, IEEE 4th World Conference, 2006.
[8] ITRPV Edition 2016_Revision 1,2016,http://www.itrpv.net/Home/.
[9] M. Taguchi, et al. “Obtaining a Higher Voc in HIT Cells”, Progress in Photovoltaics: Research and Applications, Vol. 13, pp. 481-488, 2005.
[10] Yang H, et al. “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol.472, pp.125-129, 2005.
[11] Donald A. Neamen, Semiconductor Physics and Devices: Basic Principles ,(4e), McGraw-Hill, (2012).
[12] M. S. Valipa, E. S. Aydil and D. Maroudas, “Atomistic calculation of the SiH3 surface reactivity during plasma deposition of amorphous silicon thin films”, Surface Science, Vol. 572, pp. 339-347, 2004.
[13] F.Pelanchon, et al. “The photocurrent and the open circuit voltage of a silicon solar cell”, Solar cells, Vol. 28(1), pp.41-55, 1990.
[14] M. Taguchi, A. Yano, S. Tohoda, and K. Matsuyama, “24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer”, IEEE Journal of photovoltaics , Vol. 4, NO. 1, (2014).
[15] 莊達人編著, VLSI 製造技術, 高立圖書有限公司, p. 357, (1996).
[16] V. Keudell and J. R. Abelson, “Direct insertion of SiH3 radicals into strained Si-Si surface bonds during plasma deposition of hydrogenated amorphous silicon films”, Physical Review B, Vol. 59, no. 8, Article ID 5791,1999.
[17] R.Schrop and M.Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology, Kluwer Academic, Boston, 1998.
[18] A.V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf , “Material and solar cell research in microcrystalline silicon ”, Solar Energy Materials and Solar Cells, Vol 78, pp. 469-491, 2003.
[19] O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. MuK ck, B. Rech, H. Wagner, “Intrinsic microcrystalline silicon:A new material for photovoltaics”, Solar Energy Materials and Solar Cells, Vol 62, pp. 97-108, 2000.
[20] A. Matsuda, ”Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol 337, pp. 1-6, 1999.
[21] A. Matsuda, M. Takai, T. Nishimoto, and M. Kondo,“Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy &Solar Cells, Vol.78, pp.3-26, 2003.
[22] A. Matsuda and K. Tanaka, Thin Solar Film 92,171, 1982.
[23] A. Matsuda, in Conference Record of the 25th IEEE photovoltaic Specialist Conference (IEEE, New York, 1996) p.1029, 1996.
[24] M. Kishner, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, Journal of Applied Physics, Vol. 62, pp. 2803-2811, 1987.
[25] A.Matsuda. “Thin-Film Silicon —Growth Process and Solar Cell Application”, Japanese Journal of Applied Physics, Vol 43, pp. 7909–7920, 2004.
[26] D. L. Meier, M. R. Page, E. Iwaniczko, Y, Xu, Q. Wang, H. M. Branz, “Determination of Surface Recombination Velocities for Thermal Oxide and Amorphous Silicon on Float Zone Silicon”, 17th NREL Crystalline Silicon Workshop, August, 2007.
[27] T. S. Horanyi, T. Pavelka and P. Tutto, “In situ bulk lifetime measurement on silicon with a chemically passivated surface”, Applied Surface Science, Vol. 63, pp. 306-311, 1993.
[28] Y. Tsunomura , Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, M. Tanaka, ” Twenty-two percent efficiency HIT solar cell”, Solar Energy Materials and Solar Cells 93 (2009) 670–673
[29] M. G. Kang , and S. Tark, “Changes in efficiency of a solar cell according to various surface-etching shapes of silicon substrate”, Journal of Crystal Growth , Vol. 326, p. 14– 18, (2011).
[30] Y. Yamamoto, et al. “Passivation Effect of Plasma Chemical Vapor Deposited SiNx on Single Crystalline Silicon Thin Film Solar Cells”, Japanese Journal of Applied Physics, Vol. 42, pp. 5135-5139, 2003.
[31] Burrows, M. Z., et al., “Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation”, Journal of Vacuum Science and Technology A,Vol. 26(4), pp. 683-687, 2008.
[32] J. Sritharathikhun, C. Banerjee, M. Otsubo, T. Sugiura, H. Yamamoto, T. Sato, A. Limmanee, A. Yamada and M. Konagai, “Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film”, Japanese Journal of Applied Physics, Vol. 46(6A), pp. 3296-3300, 2007.
[33] Y. Fukuda, et al. “Optical emission spectroscopy study toward high rate growth of microcrystalline silicon” ,Thin Solid Films, Vol.386, pp.256-260, 2001.
[34] H. Yang, C. Wu, J. Huang, R. Ding, Y. Zhaoa, X. Genga and S. Xionga, “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol 472, pp. 125–129, 2005.
[35] P. Kumar, F. Zhu and A. Madan, “Electrical and structural properties of nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells prepared by very high frequency plasma chemical vapor deposition”, International Journal of Hydrogen Energy, Vol 33, pp. 3938–3944, 2008.
[36] M. Takai, T. Nishimoto, M. Kondo and A. Matsuda et al., “Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma”, Applied Physics Letters, Vol. 77, pp. 18-22, 2000.
[37] A. Matsuda, M. Takai, T. Nishimoto and M. Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials &Solar Cells, Vol 78, pp. 3–26, 2003.
[38] S. Ram, L. Kroely, S. Kasouit, P. Bulkin, and P.Roca et al., “Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system”, Physica Status Solidi© , Vol. 7, pp. 553–556, 2010.
[39] J. Ge, Z. Ling, J. Wong, T. Mueller and A. Aberle et al., “Optimisation of Intrinsic a-Si:H Passivation Layers in Crystalline-amorphous Silicon Heterojunction Solar Cells”, Energy Procedia, Vol. 15, pp. 107-117, 2012.
[40] H. L. Hsiao, H. L. Hwang, A. B. Yang, L. W. Chen and T. R. Yew, “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Applied Surface Science, Vol 142, pp. 316–321, 1999.
[41] T Moiseev, D Chrastina, G Isella and C Cavallotti, “Threshold ionization mass spectrometry in the presence of excited silane radicals”, J. Phys. D: Appl. Phys. Vol. 42, pp. 5-10, 2009.
[42] J. R. Doyle, D. A. Doughty, and A. Gallagher, “Silane dissociation products in deposition discharges”, Journal of Applied Physics, Vol 68, pp. 4375,1990.
[43] P Kae-Nune, J Perrin, J Guillon and J Jolly,” Mass spectrometry detection of radicals in SiH4-CH4-H2 glow discharge plasmas”, Plasma Sources Science Technology, Vol 9, pp. 250-259, 1995.
[44] M. Goto, H. Toyoda, M. Kitagawa, T. Hirao, and H.Sugai, “low temperature growth of amorphous and polycrystalline silicon films from a modified inductively coupled plasma”, Japanese Journal of Applied Physics, Vol. 36, pp. 3714-3720, 1997
[45] S. Xu, X. Zhang, Y.Li, S. Xiong, X. Geng, and Y. Zhao, “Improve silane utilization for silicon thin film deposition at high rate”, Thin Solid Film, Vol. 520, pp. 694-696, 2011.
[46] C. C. Tsai, G. B. Anderson and R. Thompson, “Low temperature growth of epitaxial and amorphous silicon in a hydrogen-diluted silane plasma”, Journal of Non-Crystalline Solids, Vol. 137&138, pp. 673-676, 1991.
[47] U. Kroll, J. Meier,A. Shah, S. Mikhailov, and J, Weber, Journal of Applied Physics, Vol 80, pp. 4971 , 1996.
[48] Norbert H. Nickel, Hydrogen in semiconductor II, Vol. 61 , 1999.
[49] M. Jeon, S. Yoshiba, K. Kamisako “Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique”, Current Applied Physics 10 S237–S240 , 2010.
[50] J. Ge, Z. P. Ling, J. Wong, R. Stangl, A. G. Aberle, and T. Mueller, “Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy” , Journal of Applied Physics, Vol. 113, pp.234-310 , 2013.
[51] B. Stegemann, J. Kegela, M. Mews, E. Conrad, L. Korte, U. Stürzebecher and H. Angermann, “Passivation of textured silicon wafers: Influence of pyramid size distribution, a-Si:H deposition temperature, and post-treatment”, Energy Procedia ,Vol. 38, pp. 881-889, 2013
[52] State of the art technology _ Solar Global _ Panasonic HIT,2016,http://panasonic.net/ecosolutions/solar/hit/
[53] 陳建勳,非晶矽繞射光學元件的製作與分析,p.10,國立中央大學物理研究所碩士論文,民國九十四年。[54] P. Klement, C. Feser, B. Hanke, K. von Maydell, and C. Agert, "Correlation between optical emission spectroscopy of hydrogen/germane plasma and the Raman crystallinity factor of germanium layers", Applied. Physics. Letters, Vol. 102 ,152109, 2013
[55] Matsuda, M. Takai, T. Nishimoto, and M. Kondo, "Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate" , Solar Energy Materials and Solar Cells, Vol. 78, pp. 3-26 , 2003
[56] P. Tristant, Z. Ding, Q. B. Trang Vinh, H. Hidalgo, J. Jauberteau, J. Desmaison, and C. Dong et al., “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias”, Thin Solid Films, Vol. 390, pp. 51–58, 2001.
[57] 蔡旺霖,「微晶矽薄膜製程於高頻電漿反應器之電漿診斷與模型研究」,私立中原大學,碩士論文,2010年。[58] A I. Chowdhury, T M. Klein, T M. Anderson, and G N. Parsons, “Silane consumption and conversion analysis in amorphous silicon and silicon nitride plasma deposition using in situ mass spectroscopy”, Journal of Vacuum Science & Technology A, Vol 16, pp. 1852, 1998
[59] S. Lien, Y. Chang, Y. Cho, J. Wang and K. Weng et al., “Characterization of HF-PECVD a-Si:H thin film solar cells by using OES studies”, Journal of Non-Crystalline Solids, Vol. 357, pp.161–164, 2011.
[60] U. K. Das, M. Z. Burrows, M. Lu, S. Bowden, and R. W. Birkmire,” Surface passivation and heterojunction cells on Si (100) and (111) wafers using dc and rf plasma deposited Si:H thin films”, Applied Physics Letters, Vol, 92, 063504 , 2008
[61] P. K. Chang, P. T. Hsieh, F. J. Tsai, C. H. Lu, C.H. Yeh, N. F. Wang, M. P. Houng ,” High efficiency amorphous silicon solar cells with high absorption coefficient intrinsic amorphous silicon layers”, Thin Solid Films, Vol. 520 , pp. 5042–5045, 2012
[62] 胡立成,「電子迴旋共振電漿於本質矽薄膜沉積製程之研究」,國立中央大學,機械工程學系研究所博士論文,民國104年[63] 張善淵,「使用電子迴旋供震化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜製程參數研究」,國立中央大學,能源工程研究所碩士論文,民國102年[64] WIKIPEDIA,Paschen's law,https:// en.wikipedia.org/wiki/Paschen%
27s_law
[65] S. Kim, V. A. Dao, Y. Lee, C. Shin, J. Park, J. Cho, J. Yi, ” Processed optimization for excellent interface passivation quality of amorphous/crystalline silicon solar cells”, Solar Energy Materials & Solar Cells, Vol. 117, pp. 174–177, 2013
[66] T. F. Schulze, H. N. Beushausen, C. Leendertz, A. Dobrich, B. Rech et al., “Interplay of amorphous silicon disorder and hydrogen content with interface defects in amorphous/crystalline silicon heterojunctions”, Applied Physics Letters ,Vol. 96, 252102 , 2010.
[67] K. Reinhardt and W. Kern, Handbook of silicon wafer cleaning technology, 2nd ed. California USA, 2008, pp. 3–25.
[68] H. Angermann, W. Henrion, M. Rebien, and a. Röseler, “Wet-chemical preparation and spectroscopic characterization of Si interfaces,” Applied Surface Science, vol. 235, pp. 322–339, 2004.
[69] H. Angermann, J. Rappich, L. Korte, I. Sieber, E. Conrad, M. Schmidt, K. Hübener, J. Polte, and J. Hauschild, “Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application,” Applied Surface Science, vol. 254, pp. 3615–3625, 2008.
[70] S. Alivizatos, “Investigation of textured c-Si wafers for application in silicon heterojunction solar cells” , A thesis submitted for the degree of Master of Science in Sustainable Energy Technology at Delft University of Technology, 2013.
[71] W.S. Yan, D.Y. Wei, Y.N. Guo, S. Xu , T.M. Ong, C.C. Sern, “Low-temperature preparation of phosphorus doped μc-Si:H thin films by low-frequency inductively coupled plasma assisted chemical vapor deposition”, Thin Solid Films, Vol. 520, pp. 1724–1728, 2012.