跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/16 10:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:司艾倫
研究生(外文):Hailu Sheferaw Ayele
論文名稱:評估氣候變遷對衣索比亞尼羅河上游流域塔納湖的水文循環衝擊
論文名稱(外文):Assessing Climate Change Impacts on Hydrological Cycles of Lake Tana, Upper Blue Nile Basin, Ethiopia
指導教授:李明旭李明旭引用關係
學位類別:博士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:213
中文關鍵詞:Climate changeHydrological cycleWater balanceHydrological impactsGWLF hydrological modelRunoffSpecial report on emission scenariosRepresentative concentration pathwaysGilgel Abbay watershedGumara watershedRibb watershedMegech watershed
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
非洲之角的水文循環與可利用水資源已經明顯受到氣候變遷與變動的影響。本研究採用六個大氣環流模式(General Circulation Models, GCMs) 搭配IPCC AR4高排放(A2)與低排放(B1)兩種情境的氣候推估來評估2020-2039期間Gilgel Abbay與Gumara集水區的水文受氣候變遷的衝擊。並進一步採用七個大氣環流模式搭配IPCC AR5高(RCP 8.5)與中-低(RCP 4.5)代表濃度路徑 (Representative Concentration Pathways, RCP)的氣候推估來評估在2021-2040與2081-2020期間,Gilgel Abbay 集水區受到氣候變遷的影響。研究資料蒐集包含集水區的觀測日均溫及日雨量,氣候變遷情境推估資料採用對應於基期資料之溫度差值與降雨變化率為基礎,透過氣象資料繁衍用以驅動GWLF 水文模式進行集水區水文模擬,再分析降雨、溫度、蒸發散與逕流所受到的影響。此外也針對AR4與AR5的情境評估結果比較Gilgel Abbay集水區在2021-2040間衝擊評估結果的差異。最後挑選三個大氣環流模式搭配AR5的氣候推估,評估在集水區尺度下Lake Tana湖水在2021-2040與2081-2100期間相對於1993-2012的水體平衡。
儘管逕流量變化的推估在不同大氣環流模式與選用情境間有極大差異,以AR4的氣候推估評估結果為例,在兩個研究集水區的乾季與濕季逕流量皆預測為增加,主要原因為大氣環流模式的雨量推估皆增加。相對於逕流量的增幅,蒸發散量的變化較不顯著,以AR4的評估結果而言,乾季逕流量增加將有助於農業灌溉。但若以AR5的氣候推估評估結果,在兩個研究集水區的乾季逕流量則為減少、濕季逕流量為增加,且RCP 8.5的變化大於RCP 4.5、2081-2010期間的變化大於2021-2040期間。有鑑於AR4與AR5在乾季逕流變化有不同評估結果,本研究也進一步比較Gilgel Abbay集水區在2021-2040間採用AR4與AR5的衝擊評估結果在乾季與溼季水文量的異同與可能成因。本研究根據AR5氣候推估情境評估塔納湖(Lake Tana)在2021-2040與2081-2100期間的水文平衡變化,結果顯示未來塔納湖的水位有增加趨勢,主要由於溼季逕流增加所帶來較多入流,尤其是在九至十二月的湖水面有明顯上升的可能。
未來逕流量的增加有助於提高塔納湖(Lake Tana)的入流量,將有益於水資源的利用與水力發電,但濕季的降雨增加所導致的較高逕流則提高淹水危害的機率。而乾季的降雨減低則影響了原本用於灌溉的儲水。所以些微的水文狀態改變皆會對這個區域的社會、經濟與農業生產造成衝擊。某些不利的改變也會危害到周遭國家的經濟命脈,因此需要規劃與推動調適措施來減低可能的災害。因此,未來的研究工作應該著重於調查不同集水區的變遷,以及氣候變遷影響區域性及國家經濟議題。
Climate change and variability have significant influences on hydrological cycles and the availability of water in the Horn of Africa. Both IPCC AR4 and AR5 scenarios were applied to assess the impact of climate change on watershed hydrology of Tana Basins the upper Blue Nile, Ethiopia. Projections for six General Circulation Models (GCMs) in association with high (A2) and low (B1) emission scenarios were adopted from the Special Report on Emission Scenarios (SRES) for the period 2020-2039 to assess the impacts of climate changes on the Gilgel Abbay and Gumara watershed hydrology. Concurrently projections of seven global circulation models (GCMs) associated with high and medium–low Representative Concentration Pathways (RCP 8.5 and RCP 4.5) for the period 2021–2040 and 2081–2100 were adopted to assess changes on runoffs in the Gilgel Abbay watershed in this dissertation. The GCMs selected were screened in accordance with the study areas baseline climate statistics. A weather generator was employed to generate daily temperature and precipitation to drive the GWLF hydrological model for simulating runoffs. Projected changes in temperature differences and precipitation ratios relative to the baseline were analyzed to explain the variations in evapotranspiration and the influences on runoff. Assessment results on Gilgel Abbay watershed by the AR4 and AR5 scenarios were compared for the period 2021-2040. Finally, three GCMs from RCPs scenarios were selected and employed to assess the impact at basin scale and to estimate the lake water balance at present 1993-2012 and future time windows 2021-2040 and 2081-2100.
Despite the fact that the projected magnitude varies among GCMs and scenarios, increasing runoff in both wet and dry seasons was observed for both watersheds, attributable mainly to the increase in precipitation projected by most GCMs. In contrast to the great increases in runoff, variations in evapotranspiration are less significant. The projected runoff in both watersheds implies increased potential for promoting agricultural irrigation in the dry season in case of AR4 SRES. Alongside, despite the projected magnitude of changes varied among different GCMs, increasing runoffs in wet-season and decreasing in dry-season are observed in both periods, mainly attributed to the change in projected precipitation. Such changes are profound in cases of RCP 8.5 with respect to those of RCP 4.5 and in cases of 2081–2100 with respect to those of 2021–2040 in case of RCPs. Finally, three GCMs from the RCPs scenarios at basin scale indicated Climate change has a potential to perturb the water balance of the lake due to inflows as it do affect runoffs and rate of changes in water storage through water evaporation. The water balance prediction by the three GCMs for 2021-2040 and 2081-2100 time windows shown a general increase in the predicted lake level in the month of September to December relative to baseline this may attributed to seasonal shift occurred in both precipitation and inflow.
Although the increasing runoffs would provide greater inflow to Lake Tana, the increase of precipitation in wet-season would imply a higher possibility of flash floods. On the other hand, decrease runoffs in dry-season further intensify existing shortage of irrigation water demand. So, any changes in the hydrological or ecological behavior of the Lake will have far reaching consequences on the economy of the region. These changes will have deleterious consequences on the economic wellbeing of the country and require successful implementation of adaption measures to reduce vulnerability. Therefore, future studies shall investigate further the interlinkages between watershed and basin level physical impacts of climate change on the regional and national economy.
ACKNOWLEDGEMENTS i
DEDICATION iii
摘要 iv
ABSTRACT v
LIST OF FIGURES xi
LIST OF TABLES xiv
LIST OF ACRONYM, ABBREVIATION AND SYMBOL xv
1. BACKGROUND 1
1.1 Introduction 1
1.2 Motivation 2
1.3 Objectives 5
1.4 Structure of the dissertation 6
2. REVIEW OF RELATED LITERATURE 7
2.1 Global climate change 7
2.1.1 GCMs 11
2.1.2 Downscaling 16
2.2 Climate change scenarios 17
2.2.1 Climate model based approaches of climate change Scenario development 17
2.2.2 Incremental approach of climate change scenario development 18
2.3 Climate change in Ethiopia, Blue Nile basin and Tana sub-basin 18
2.4 Impact assessment 20
3. DESCRIPTION OF THE STUDY AREA 23
3.1 Drainage basin of Ethiopia 23
3.2 Blue Nile basin 25
3.3 Tana basin 26
3.3.1 Topography 27
3.3.2 Climate 28
3.3.3 Land cover/use and soil 32
3.3. 4 Hydrology of the basin 32
3.6 Sources of data 35
3.6.1. Meteorological data 35
3.6.2 Hydrological data 35
3.6.3. Missed data and data quality check up 36
3.7 Economical importance of Lake Tana basin 36
3.7.1 Agricultural and irrigation 37
3.7.2 Hydropower potential 37
3.7.3 Fishing and transport 38
3.7.4 Tourism and ecological balance of area 38
4. METHODOLOGY 40
4.1 Frameworks of the study 40
4.2 Climate change scenario 41
4.2.1 Selection of GCMs and their descriptions 41
4.3 Downscaling and weather generator 45
4.3.1 Downscaling 45
4.3.2 Weather generator model 45
4.4 Hydrological model 46
4.5 Input data 47
4.5.1 Antecedent rainfall for initial 5 days 48
4.5.2 Evapotranspiration (ETt) 49
4.5.3 Daylight hours 49
4.5.4 Growing season 49
4.5.5 Runoff (Qt) 50
4.5.6 Groundwater (Gt) 50
4.6 GWLF daily water balance calculation 52
4.7 Model calibration and evaluation 54
4.7.1 Model calibration 54
4.7.2 Model evaluation 54
4.8 Calculation of water balance of Lake Tana 56
4.8.1 Lake rainfall 57
4.8.2 Estimation of Lake evaporation 59
4.8.3 Lake water volume and bathymetry 61
4.8.4 Lake outflow and Lake level 62
4.8.5 Groundwater inflow and outflow (Gnet) 63
4.8.6 Inflow into the lake (Qin) 63
4.8.7 Inflow estimation from ungauged catchments 64
4.8.8 Lake water level simulation 65
4.8.9 Impact assessment of climate change 66
4.8.9.1 Occurrence of hydrological drought 66
4.8.9.2 Standardized Precipitation Index (SPI) 67
4.8.9.3 Probability occurrence of minimum and maximum lake level/outflow 68
5. CLIMATE IMPACT ASSESSMENT 72
5.1 Hydrological model 72
5.1.1 GWLF model calibration and performance evaluation 72
5.1.2 Gilgel Abbay watershed 73
5.1.3 Gumara watershed 74
5.1.4 Ungauged inflow estimation 75
5.2 Impact assessment of climate change on Gilgel Abbay and Gumara 76
watersheds: the case AR4 of SRES 76
5.2.1 Climate change impact assessment 77
5.3 Impact Assessment of Climate change on Gilgel Abbay watershed: the 87
case AR5 of RCPs (IPCC, 2014) 87
5.3.1 Projected impact of climate change 88
5.3.1.1 Temperature 88
5.3.1.3 Evapotranspiration 91
5.3.1.4 Runoff 92
5.3.5. Possible impact on Lake storage and irrigation scheme 96
5.4 Impact assessment of climate change similarity/ differences between 101
AR4 SRES and AR5 RCPs scenarios 101
5.4.1 Temperature 101
5.4.2 Precipitation 103
5.4.3 Evapotranspiration 105
5.4.4 Runoff 105
6. CLIMATE CHANGE IMPACT ASSESSMENT AT BASIN 111
SCALE 111
6.1 Lake water balance estimation based on observed data 111
6.1.1 Lake areal rainfall estimation 111
6.1.2 Inflow into the lake 116
6.1.3 Open water evaporation 116
6.1.4 Lake outflow in relation to lake level and Lake bathymetry 119
6.1.5 Lake level simulation 124
6.1.6 Estimation of water budget of Lake Tana 126
6.2 Applying climate change to the water balance of Lake Tana 126
6.2.1 Projected Lake rainfall 126
6.2.2 Projected total inflow 128
6.2.3 Projected open water evaporation 130
6.2.4 Projected Lake outflow 133
6.2.5 Projected Lake level 135
6.2.6 Projected Lake water balance analysis 138
6. 3 Socio-economic impacts 140
6.3.1 SPI and probability occurrence of hydrological droughts 141
6.3.2 Impact on the hydropower potential 144
6.3.3 Impact on agriculture and food security 147
7. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 150
7.1 Conclusion 150
7.2 Further research 152
REFERENCES 155
Appendix A. Methodology Diagram 163
Appendix B. Soil Hydrologic Groups 164
Appendix C. Catchment Delineation Procedure 170
Appendix D: Long Term average monthly Lake areal rainfall (1993-2012) 171
Appendix E. Gauged catchments and Ungauged Catchment Inflow 174
APPENDIX F. Data for Rainfall Calculation 176
APPENDX G. Evaporation 179
Appendix H. Input and output of model 184
CURRICULUM VITAE 192
PUBLICATIONS 193
Abbaspour, K. C., M. Faramarzi, S. S. Ghasemi, and H. Yang, 2009: Assessing the impact of climate change on water resources in Iran. Water Resour. Res., 45, doi:10.1029/2008WR007615.
Abdo, K. S., B. M. Fiseha, T. H. M. Rientjes, A. S. M. Gieske, and A. T. Haile, 2009: Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana basin, Ethiopia. Hydrol. Process., 23, 3661–3669, doi:10.1002/hyp.1454.
Aich, V., and Coauthors, 2014: Comparing impacts of climate change on streamflow in four large African river basins. Hydrol. Earth Syst. Sci., 18, 1305–1321, doi:10.5194/hess-18-1305-2014.
Akinnubi RT, B. J., and A. RT, 2014: Influence of Climate Change in Niger River Basin Development Authority Area on Niger Runoff, Nigeria. J. Earth Sci. Clim. Change, 5, doi:10.4172/2157-7617.1000230.
Arnell, N. W., 2004: Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob. Environ. Chang., 14, 31–52, doi:10.1016/j.gloenvcha.2003.10.006.
Awulachew, S., A. Yilma, M. Loulseged, L. Willibad, M. Ayana, and T. Alamirew, 2007: Water Resources and Irrigation Development in Ethiopia. Working pa. International Water Management Institute (IWMI), Colombo, Sri Lanka,.
Ayele, H., M.-H. Li, C.-P. Tung, and T.-M. Liu, 2016: Impact of Climate Change on Runoff in the Gilgel Abbay Watershed, the Upper Blue Nile Basin, Ethiopia. Water, 8, 380, doi:10.3390/w8090380.
BD, E., V. L. HAJ, and V. L. AF, 2014: Assessment of the Impact of Climate Change on Hydrological Drought in Lake Tana Catchment, Blue Nile Basin, Ethiopia. J. Geol. Geosci., 1–17, doi:10.4172/2329-6755.1000174.
Belete, M. A., 2013: Modeling and Analysis of Lake Tana Sub Basin Water Resources Systems, Ethiopia.
Berhane, F., B. Zaitchik, A. Dezfuli, F. Berhane, B. Zaitchik, and A. Dezfuli, 2014: Subseasonal Analysis of Precipitation Variability in the Blue Nile River Basin. J. Clim., 27, 325–344, doi:10.1175/JCLI-D-13-00094.1.
Bernstein, L., and Coauthors, 2007: Climate Change 2007 Synthesis Report The Core Writing Team Rajendra K. Pachauri Andy Reisinger Synthesis Report Chairman Head, Technical Support Unit IPCC IPCC Synthesis Report, IPCC Core Writing Team Technical Support Unit for the Synthesis Report. Intergov. Panel Clim. Chang. [Core Writ. Team IPCC,.
Beyene, T., D. P. Lettenmaier, and P. Kabat, 2010: Hydrologic impacts of climate change on the Nile River Basin: implications of the 2007 IPCC scenarios. Clim. Change, 100, 433–461, doi:10.1007/s10584-009-9693-0.
Bloschl, G., M. Sivapalan, and T. Wagener, 2013: Runoff prediction in ungauged basins: Synthesis across processes, places and scales. Cambridge University Press,.
Buytaert, W., R. Celleri, P. Willems, B. De Bièvre, and G. Wyseure, 2006: Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. J. Hydrol., 329, 413–421, doi:10.1016/j.jhydrol.2006.02.031.
Chebud, Y. A., and A. M. Melesse, 2009: Modelling lake stage and water balance of Lake Tana, Ethiopia. Hydrol. Process., 23, 3534–3544, doi:10.1002/hyp.7416.
Chow, Ven, T., D. R. Maidment, and L. W. Mays, 1988: Applied hydrology. R. Eliassen, P.H. King, and R.K. Linsley, Eds. McGraw-Hill Series In water resources and enviromental engineering, New York, NY,.
Conway, D., 2005: From headwater tributaries to international river: Observing and adapting to climate variability and change in the Nile basin. Glob. Environ. Chang., 15, 99–114, doi:10.1016/j.gloenvcha.2005.01.003.
Coulibaly, P., Y. B. Dibike, F. Anctil, and B. L. Hamilton, 2004: Science Sub-Component Climate Change Action Fund, Environment Canada Downscaling of Global Climate Model Outputs for Flood Frequency Analysis in the Saguenay River System.
Degré, A., S. Ly, and C. Charles, 2013: Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: a review. J. Base, 17.
Deininger, K., D. A. Ali, S. Holden, and J. Zevenbergen, 2008: Rural Land Certification in Ethiopia: Process, Initial Impact, and Implications for Other African Countries. World Dev., 36, 1786–1812, doi:10.1016/j.worlddev.2007.09.012.
Deininger, R. A., and J. D. Westfield, 1969: Estimation of the Parameters of Gumbel’s Third Asymptotic Distribution by Different Methods. Water Resour. Res., 5, 1238–1243, doi:10.1029/WR005i006p01238.
Dile, Y., R. Berndtsson, and S. Setegn, 2013: Hydrological Response to Climate Change for Gilgel Abay River, in the Lake Tana Basin - Upper Blue Nile Basin of Ethiopia. PLoS One, 8, e79296, doi:10.1371/journal.pone.0079296.
Dile, Y. T., and R. Srinivasan, 2014: Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: an application in the Blue Nile River Basin. JAWRA J. Am. Water Resour. Assoc., 50, 1226–1241, doi:10.1111/jawr.12182.
Dingman, S. ., 2002: physical hydrology. Prentice Hall, Upper Saddle River, NJ,USA,.
Dost, R. J. J., and C. M. M. Mannaerts, 2008: Generation of Lake Bathymetry using Sonar, Satellite Imagery and GIS. International Institute for Geo-Information Science and Earth Observation (ITC), Netherlands.
Easton, Z. M., and Coauthors, 2010: A multi basin SWAT model analysis of runoff and sedimentation in the Blue Nile, Ethiopia. Hydrol. Earth Syst. Sci., 14, 1827–1841, doi:10.5194/hess-14-1827-2010.
Elshamy, M. E., I. A. Seierstad, and A. Sorteberg, 2009: Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. Hydrol. Earth Syst. Sci, 13, 551–565.
Falloon, P. D., and R. A. Betts, 2006: The impact of climate change on global river flow in HadGEM1 simulations. Atmos. Sci. Lett., 7, 62–68, doi:10.1002/asl.133.
Fang, G., and Coauthors, 2015: Climate Change Impact on the Hydrology of a Typical Watershed in the Tianshan Mountains. Adv. Meteorol., 2015, 1–10, doi:10.1155/2015/960471.
FAO, 1983: World review: the situation in Sub-Saharan Africa Women in developing agriculture.
Federal Democratic Republic of Ethiopia Population Census Commission (FDREP), 2008: Summary and Statistical Report of the 2007 Population and Housing Census. Addis Ababa, Ethiopia,.
Ferguson, H., and V. Znamensky, 1981: Methods of computation of the water balance of large lakes and reservoirs. Volume I. Methodology.
George H. Hargreaves, G. H., and Z. A. Zohrab A. Samani, 1985: Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric., 1, 96–99, doi:10.13031/2013.26773.
Graedel, T. E., and P. J. Crutzen, 1993: Atmospheric change: An earth system perspective. New York, NY (United States); W.H. Freeman and Co., New York, NY,.
Haith, Douglas, A., R. Mandel, and S. Wu, Ray, 1992: GWLF, Generalized Watershed Loading Functions, Version 2.0, User’s Manual; Dep. Agric. Biol. Eng. Cornell Univ. Ithaca, NY, USA,.
Hamon, W. ., 1961: Estimating potential evapotranspiration. Proceeding of the American Society of Civil Engineers 87:, . Proceeding of the American Society of Civil Engineers 87:, 107–120.
Hargreaves, G. H., F. Asce, and R. G. Allen, 2003: History and Evaluation of Hargreaves Evapotranspiration Equation. J. Irrig. Drain. Eng. /, doi:10.1061/͑ASCE͒0733-9437͑2003͒129:1͑53͒.
Hewitson, B. C., and R. G. Crane, 2006: Consensus between GCM climate change projections with empirical downscaling: precipitation downscaling over South Africa. Int. J. Climatol., 26, 1315–1337, doi:10.1002/joc.1314.
Hewitt, C. D., 2004: Ensembles-based predictions of climate changes and their impacts. Eos, Trans. Am. Geophys. Union, 85, 566, doi:10.1029/2004EO520005.
Hotchkiss, R. S., and I. E. Karl, 2003: The Pathophysiology and Treatment of Sepsis. N. Engl. J. Med., 348, 138–150, doi:10.1056/NEJMra021333.
Karl,T, R., J. . Melillo, and T. C. Peterson, 2009: Global Climate Change Impacts in the United States | RosemontEIS.
Kebede, S., Y. Travi, T. Alemayehu, and V. Marc, 2005: Water balance of Lake Tana and its sensitivity to fluctuations in rainfall, Blue Nile basin, Ethiopia. J. Hydrol., 316, 233–247, doi:10.1016/j.jhydrol.2005.05.011.
Koirala, S., and Coauthors, 2014: Global assessment of agreement among streamflow projections using CMIP5 model outputs. Environ. Res. Lett., 9, 64017, doi:10.1088/1748-9326/9/6/064017.
Krashes, M. J., 2016: Physiology: Forecast for water balance. Nature, 537, 626–627, doi:10.1038/537626a.
Krause, P., D. P. Boyle, and F. Bäse, 2005: Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci., 5, 89–97.
Kumambala, P. G., and A. Ervine, 2010: Water Balance Model of Lake Malawi and its Sensitivity to Climate Change. Open Hydrol. J., 4, 152–162.
Kumr, A., N. Mishra, and B. Nayal, 2009: Assessment and Management of Meteorological drought for crop planting in Tarai region of ttarakhand. Hydrol. J., 32.
Kurc, S. A., and E. E. Small, 2007: Soil moisture variations and ecosystem-scale fluxes of water and carbon in semiarid grassland and shrubland. Water Resour. Res., 43, doi:10.1029/2006WR005011.
Kusangaya, S., M. L. Warburton, E. Archer van Garderen, and G. P. W. Jewitt, 2014: Impacts of climate change on water resources in southern Africa: A review. Phys. Chem. Earth, Parts A/B/C, 67, 47–54, doi:10.1016/j.pce.2013.09.014.
Van Lanen HAJ, E. B., V. L. HAJ, and V. L. AF, 2014: Assessment of the Impact of Climate Change on Hydrological Drought in Lake Tana Catchment, Blue Nile Basin, Ethiopia. J. Geol. Geosci., 3, 1–17, doi:10.4172/2329-6755.1000174.
Legates,David, R., and G. McCabe Jr, 1999: Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. WATER Resour. Res. , 35, 233–241.
Li, M.-H., W. Tien, and C.-P. Tung, 2009: Assessing the impact of climate change on the land hydrology in Taiwan. Paddy Water Environ., 7, 283–292, doi:10.1007/s10333-009-0175-9.
Mbaye, M. L., S. Hagemann, A. Haensler, T. Stacke, A. T. Gaye, and A. Afouda, 2015: Assessment of Climate Change Impact on Water Resources in the Upper Senegal Basin (West Africa). Am. J. Clim. Chang., 4, 77–93, doi:10.4236/ajcc.2015.41008.
McCartney, M., T. Alemayehu, A. Shiferaw, S. Bekele Awulachew, and T. Basin, 2010: Evaluation of Current and Future Water Resources Development in the Lake.
Mckee, T. B., N. J. Doesken, and J. Kleist, 1993: The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conf. Appl. Climatol., 17–22.
Meehl, G. A., and Coauthors, 2004: Combinations of Natural and Anthropogenic Forcings in Twentieth-Century Climate. J. Clim., 17, 3721–3727, doi:10.1175/1520-0442(2004)017<3721:CONAAF>2.0.CO;2.
Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. climi.change, 109, 213–241, doi:10.1007/s10584-011-0156-z.
Middelkoop, H., and Coauthors, 2001: Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim. Chang., 49, 105–128.
Moore, R. ., V. . Bell, S. . Cole, and D. . Jones, 2007: Rainfall-runoff and other modelling for ungauged/low-benefit locations.
Musau, J., J. Sang, J. Gathenya, and E. Luedeling, 2015: Hydrological responses to climate change in Mt. Elgon watersheds. J. Hydrol. Reg. Stud., 3, 233–246, doi:10.1016/j.ejrh.2014.12.001.
Nicholson, S. E., and X. Yin, 2001: Rainfall Conditions in Equatorial East Africa during the Nineteenth Century as Inferred from the Record of Lake Victoria. Clim. Change, 48, 387–398, doi:10.1023/A:1010736008362.
Nigatu, Z. M., T. Rientjes, and A. T. Haile, 2016: Hydrological Impact Assessment of Climate Change on Lake Tana’s Water Balance, Ethiopia. Am. J. Clim. Chang., 5, 27–37, doi:10.4236/ajcc.2016.51005.
Pachauri, R. K., L. Mayer, and Intergovernmental Panel on Climate Change, 2014: Climate change 2014 : synthesis report. 151 pp.
Palmer, and Wayne C, Meteorological Drought. Research Paper No. 45, 1965, 58 p.
Rajbhandari, S., 2010: Energy and environmental implications of carbon emission reduction targets: Case of Kathmandu Valley, Nepal. Energy Policy, 38, 4818–4827, doi:10.1016/j.enpol.2009.11.088.
Riahi, K., and Coauthors, 2011: RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change, 109, 33–57, doi:10.1007/s10584-011-0149-y.
Saliha,Alemayehu, H., 2012: Decision Support Tool to Optimize the Operation of Multi- Purpose Reservoirs: A Case Study in the Lake Tana Catchment, Ethiopia.
Santhi, C., J. G. Arnold, J. R. Williams, W. A. Dugas, R. SrinivasanA, and L. M. Hauck, 2001: Santhi, C, J. G. Arnold, J. R. Williams, W. A. Dugas, R. Srinivasan, and L. M. Hauck. 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. American Water Resources Assoc. 37(5): 1169-1188. Sevat, E., and A. Dezette. Am. WATER Resour. Assoc., 37, 1169–1188.
Seaby, L. P., J. C. Refsgaard, T. O. Sonnenborg, S. Stisen, J. H. Christensen, and K. H. Jensen, 2013: Assessment of robustness and significance of climate change signals for an ensemble of distribution-based scaled climate projections. J. Hydrol., 486, 479–493, doi:10.1016/j.jhydrol.2013.02.015.
SENE, K. J., 2000: Theoretical estimates for the influence of Lake Victoria on flows in the upper White Nile. Hydrol. Sci. J., 45, 125–145, doi:10.1080/02626660009492310.
Setegn, S. G., 2010: Modelling Hydrological and Hydrodynamic Processes in Lake Tana Basin, Ethiopia. Royal Institute of Technology (KTH), .
Setegn, S. G., D. Rayner, A. M. Melesse, B. Dargahi, and R. Srinivasan, 2011: Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour. Res., 47, n/a-n/a, doi:10.1029/2010WR009248.
Shemsanga, C., A. N. Omambia, and Y. Gu, 2010: The Cost of Climate Change in Tanzania: Impacts and Adaptations. J. Am. Sci. Am. Sci., 6, 182–196.
Shuttleworth, W. ., 1993: Evaporation: Hand Book of hydrology. Maindment,. McGraw-Hill In, New York,.
Sivapalan, M., 2003: Prediction in ungauged basins: a grand challenge for theoretical hydrology. Hydrol. Process., 17, 3163–3170, doi:10.1002/hyp.5155.
Snowy Mountains Engineering Corporation (SMEC), 2008: Hydrological study of the Tana-Beles Sub-Basin: Surface Water Investigation; Melbourne, Australia,.
Tan, M. L., D. L. Ficklin, A. L. Ibrahim, and Z. Yusop, 2014: Impacts and uncertainties of climate change on streamflow of the Johor River Basin, Malaysia using a CMIP5 General Circulation Model ensemble. J. Water Clim. Chang., 5.
Team, C.W.;Pachauri, R.;Reisinger, A., 2007: A .contribution of working Groups I,II and III to the Fourth Assessement Report of the Intergovernmental Panel On Climate Change; IPCC;Geneva,Swither Land.
Tett, S. F. B., and Coauthors, 2002: Estimation of natural and anthropogenic contributions to twentieth century temperature change. J. Geophys. Res., 107, 4306, doi:10.1029/2000JD000028.
Thomson, A. M., and Coauthors, 2011: RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim. Change, 109, 77–94, doi:10.1007/s10584-011-0151-4.
Thornes, J. E., 2002: IPCC, 2001: Climate change 2001: impacts, adaptation and vulnerability, Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. J. McCarthy, O. F. Canziani, N. A. Leary, D. J. Dokken a. John Wiley & Sons, Ltd., 1285-1286 pp.
Tung, C., 2014: Carrying Capacity and Sustainability Appraisals on Regional Water Supply Systems under Climate Change. Br. J. Environ. Clim. Chang., 4, 27–44, doi:10.9734/BJECC/2014/8572.
United Nations Economic Commission for Africa (UNECA), 2011: Climate change and water resources of Africa : challenges, opportunities and impacts. Addis Ababa, Ethiopia, 1-26 pp.
United States Department of Agiriculture (USDA), 1986: Urban Hydrology for Small Watersheds.
Van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: an overview. Clim. Change, 109, 5–31, doi:10.1007/s10584-011-0148-z.
Wale, A., T. H. M. Rientjes, A. S. M. Gieske, and H. A. Getachew, 2009: Ungauged catchment contributions to Lake Tana’s water balance. Hydrol. Process., 23, doi:10.1002/hyp.7284.
——, A. S. Collick, D. G. Rossiter, S. Langan, and T. S. Steenhuis, 2013: Realistic assessment of irrigation potential in the Lake Tana basin, Ethiopia.
Wilby, R. L., and C. W. Dawson, 2007: SDSM 4.2 — A decision support tool for the assessment of regional climate change impacts User Manual.
Wilske, B., and Coauthors, 2010: Evapotranspiration (ET) and regulating mechanisms in two semiarid Artemisia-dominated shrub steppes at opposite sides of the globe. J. Arid Environ., 74, 1461–1470, doi:10.1016/j.jaridenv.2010.05.013.
Wise, M., and Coauthors, 2009: Implications of Limiting CO2 Concentrations for Land Use and Energy. Science (80-. )., 324.
Xu, C.-Y., and V. P. Singh, 2001: Evaluation and generalization of temperature-based methods for calculating evaporation. Hydrol. Process., 15, 305–319.
Zorita, E., H. von Storch, E. Zorita, and H. von Storch, 1999: The Analog Method as a Simple Statistical Downscaling Technique: Comparison with More Complicated Methods. J. Clim., 12, 2474–2489, doi:10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top