跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/16 10:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高尉蘭
研究生(外文):Wei-Lan Gao
論文名稱:雙軸晶體圓錐折射之探討與分析
指導教授:欒丕綱
指導教授(外文):Pi-Gang Luan
學位類別:碩士
校院名稱:國立中央大學
系所名稱:照明與顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:112
中文關鍵詞:雙軸晶體圓錐折射
外文關鍵詞:conical refraction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討內部圓錐折射現象 (internal conical refraction)。首先利用Hamilton原理分析圓錐折射的光線成像,並解釋Poggendorff暗環及Raman光斑,再透過Belsky和Khapalyuk的精確近軸理論計算高斯光束通過雙軸晶體 (biaxial crystal) 的內部圓錐折射現象。利用近軸近似的條件,計算光所走的光程長度,並考慮入射光束腰寬的影響,透過疊加各角度平面波計算出光強度。
對於非磁性、非手徵 (non-chiral) 的雙軸晶體,在線性偏振情況下,於焦平面 (focal image plane) 位置出射光為新月形 (crescent-shaped) 的圓環,並證明偏振方向會隨著方位角改變以一種迷人的方式旋轉。當雙軸晶體加入手徵性 (chirality) 後,光束會在某一特定位置聚焦,且對應於線偏振光的成像會有類似咖啡漩渦 (coffee swirl) 的圖形。本研究所發現的特殊偏振旋轉現象可供實驗學家在未來進行實驗上的驗證。
In this thesis, we discuss internal conical refraction. First, we review the theory based on Hamilton’s principle for analyzing the image of rays due to conical refraction, and explain the mechanisms of Poggendorff’s dark ring and Raman spot. Next, we calculate the image intensity using Belsky and Khapalyuk’s exact paraxial theory for internal conical refraction of a Gaussian beam passing through a biaxial crystal along an optical axis. In this theory, the image intensity is obtained from absolute-squaring the electric-displacement field (D-field), which is a superposition of many plane waves of D-field, each carries a phase of the optical path length of the corresponding ray, modified by the Gaussian phase function of the incident beam of a given beam width.
For non-magnetic and non-chiral biaxial crystal, if the input beam is linearly polarized, the output beam is a crescent-shaped ring on the focal image plane, and the polarization direction rotates in a fascinating way as the azimuth angle changes. When chirality is included, the imaging beam will focus at some specific location, and for linearly polarized incident beam the image pattern resembles a coffee swirl. The behavior of the polarization rotation found in this study might be an interesting phenomenon to be verified experimentally in the future.
摘要 I
誌謝 III
目次 IV
圖目錄 VI
表目錄 IX
一、緒論 1
1-1 圓錐狀折射(Conical Refraction) 1
1-2 圓錐折射實際應用層面 5
二、雙軸晶體與圓錐折射 6
2-1 晶體中電磁波的傳播行為 6
2-1-1 Normal Surface 7
2-1-1-1 單軸晶體 11
2-1-1-2 雙軸晶體 13
2-1-2 Index Ellipsoid 14
2-2 從雙折射到圓錐折射 16
2-2-1 光軸與笛卡兒座標z軸夾角與圓錐半角 16
2-2-2 雙軸晶體沿著光軸方向之介電張量 21
2-2-3 Ray Surface及偏振旋轉 25
三、圓錐折射之定量模擬 27
3-1 Poggendorff’s dark ring及Raman’s bright spot 28
3-1-1 非手徵性雙軸晶體 28
3-1-2 手徵性雙軸晶體 35
3-2 Belsky及Khapalyuk的圓錐折射精確近軸理論 36
3-2-1 非手徵性雙軸晶體 36
3-2-2 手徵性雙軸晶體 40
3-3 內部與外部圓錐折射 41
3-3-1 內部圓錐折射 41
3-3-2 外部圓錐折射 42
3-3-3 內部與外部圓錐折射成因之解釋 42
四、圓錐折射的模擬與分析 46
4-1 實際情況之模擬參數設定 47
4-2 無單位變數模擬參數設定 53
4-2-1 決定圓環的無單位參數 53
4-2-2 相對光傳播距離對圓環的影響 59
4-3 偏振光入射於非手徵性雙軸晶體 73
4-3-1 focal image plane 73
4-3-2 相對光傳播距離改變之影響 77
4-4 手徵性雙軸晶體 81
4-4-1 非偏振光入射於手徵性雙軸晶體 81
4-4-2 偏振光入射於手徵性雙軸晶體 89
五、結論與未來展望 98
5-1 結論 98
5-2 未來展望 99
參考文獻 100
[1] Hamilton,W.R., “Theory of Systems of Rays,” Trans. Royal Irish Acad. 15, 69–174, 1828.
[2] Hamilton,W.R., “Supplement to an Essay on the Theory of Systems of Rays,” Trans. Royal Irish Acad. 16, 1–61, 1830.
[3] Hamilton,W.R., “Second Supplement to an Essay on the Theory of Systems of Rays,” Trans. Royal Irish Acad. 16, 93–125, 1831.
[4] Hamilton,W.R., “Third Supplement to an Essay on the Theory of Systems of Rays,” Trans. Royal Irish Acad. 17, 1–144, 1837.
[5] Lloyd, H., “On the phenomena presented by light in its passage along the axes of biaxial crystals,” Trans. R. Ir. Acad. 17, 145–158, 1837.
[6] Poggendorff, J.C., “Ueber die konische Refraction, Pogg. Ann. 48, 461–462,” 1839.
[7] Potter, R., “An examination of the phaenomena of conical refraction in biaxial crystals,” Phil. Mag. 8, 343–353, 1841.
[8] Voigt, W., “Bemerkung zur Theorie der konischen Refraktion,” Phys. Z. 6, 672–673,1905.
[9] Born, M., Wolf, E., “Principles of Optics,” seventh ed., Pergamon, London, 1999.
[10] Raman, C.V., Rajagopalan, V.S., Nedungadi, T.M.K., “Conical refraction in naphthalene crystals,” Proc. Ind. Acad. Sci. A 14, 221–227, 1941.
[11] Lalor, E., “An analytical approach to the theory of internal conical refraction,” J. Math. Phys. 13,449–454, 1972.
[12] Schell, A.J., Bloembergen, N., “Laser studies of internal conical diffraction. I. Quantitative comparison of experimental and theoretical conical intensity dirstribution in aragonite,” J. Opt. Soc. Amer. 68, 1093–1098, 1978.
[13] Belsky, A.M., Khapalyuk, A.P., “Internal conical refraction of bounded light beams in biaxial crystals,” Opt. Spectrosc. (USSR) 44, 436–439, 1978.
[14] Jeffrey, M. R., “Conical Diffraction: Complexifying Hamilton’s Diabolical Legacy,” Ph.D. Thesis, University of Bristol, 2007.
[15] Mikhailychenko, Y.P., “Large scale demonstrations on conical refraction,” http://www.demophys. tsu.ru/Original/Hamilton/Hamilton.html, 2005.
[16] Fève, J.P., Boulanger, B., Marnier, G., “Experimental study of internal and external conical refraction in KTP,” Opt. Commun. 105, 243–252, 1994.
[17] Berry, M.V., Jeffrey, M.R., Lunney, J.G., “Conical diffraction: observations and theory,” Proc. R. Soc. A 462, 1629–1642, 2006.
[18] VCT, Home page of Vision Crystal Technology, http://www.vct-ag.com/, 2006.
[19] M. V. Berry and M. R. Jeffrey, “Conical diffraction: Hamilton's diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50, 2007.
[20] O’Dwyer, D. P., Phelan, C. F., Ballantine, K. E., Rakovich, Y. P., Lunney, J. G., and Donegan, J. F., “Conical diffraction of linearly polarised light controls the angular position of a microscopic object,” Opt. Express, 18, 27319-27326, 2010.
[21] Phelan, C. F., Donegan, J. F., and Lunney, J. G., “Generation of a radially polarized light beam using internal conical diffraction,” Opt. Express, 19, 21793-21802, 2011.
[22] Jeffrey, M. R., “Conical diffraction in optically active crystals,” IoP Online proceedings of Photon 06: http://photon06 org/Diffractive%20optics%20Thurs%2014 15 pdf, 2006 (Jan 2007).
[23] Berry, M.V., Jeffrey, M.R., “Chiral conical diffraction,” J. Opt. A 8, 363–372, 2006.
[24] Jeffrey, M.R., “The spun cusp complexified: complex ray focusing in chiral conical diffraction,” J. Opt. A. 9, 634–641, 2007.
[25] Schell, A.J., Bloembergen, N., “Second harmonic conical refraction,” Opt. Commun. 21, 150–153, 1977.
[26] Shih, H., Bloembergen, N., “Conical refraction in second harmonic generation,” Phys. Rev. 184, 895–904, 1969.
[27] Indik, R. A., Newell, A. C., “Conical refraction and nonlinearity,” Opt. Express, 14, 10614-10620, 2006.
[28] A. Yariv, P. Yeh, “Optical Waves in Crystals: Propagation and Control of Laser Radiation,” Wiley Interscience, 2002.
[29] Herbert Goldstein, Charles Poole, John Safko, “Classical Mechanics Third Editon,” Pearson, 3rd edition, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top