|
1.Blattner, F. R., The Complete Genome Sequence of Escherichia coli K-12. Science 1997, 277 (5331), 1453-1462. 2.Beinert, H.; Holm, R. H.; Munck, E., Iron-sulfur clusters: nature's modular, multipurpose structures. Science 1997, 277 (5326), 653-9. 3.Beinert, H., A tribute to sulfur. European Journal of Biochemistry 2000, 267 (18), 5657-64. 4.Lill, R.; Broderick, J. B.; Dean, D. R., Special issue on iron-sulfur proteins: Structure, function, biogenesis and diseases. Biochim Biophys Acta 2015, 1853 (6), 1251-2. 5.Dixon, R.; Eady, R. R.; Espin, G.; Hill, S.; Iaccarino, M.; Kahn, D.; Merrick, M., Analysis of regulation of Klebsiella pneumoniae nitrogen fixation (nif) gene cluster with gene fusions. Nature 1980, 286 (5769), 128-32. 6.Frazzon, J.; Fick, J. R.; Dean, D. R., Biosynthesis of iron-sulphur clusters is a complex and highly conserved process. Biochemical Society Transactions 2002, 30 (4), 680-5. 7.Takahashi, Y.; Tokumoto, U., A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. Journal of biological chemistry 2002, 277 (32), 28380-3. 8.Loiseau, L.; Ollagnier-de-Choudens, S.; Nachin, L.; Fontecave, M.; Barras, F., Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. Journal of Biological Chemistry 2003, 278 (40), 38352-9. 9.Py, B.; Barras, F., Building Fe-S proteins: bacterial strategies. Nature Reviews Microbiology 2010, 8 (6), 436-46. 10.Cruz-Ramos, H.; Crack, J.; Wu, G.; Hughes, M. N.; Scott, C.; Thomson, A. J.; Green, J.; Poole, R. K., NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. The EMBO Journal 2002, 21 (13), 3235-44. 11.Pullan, S. T.; Gidley, M. D.; Jones, R. A.; Barrett, J.; Stevanin, T. M.; Read, R. C.; Green, J.; Poole, R. K., Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S nitrosation. Journal of Bacteriology 2007, 189 (5), 1845-55. 12.Pullan, S. T.; Monk, C. E.; Lee, L.; Poole, R. K., Microbial responses to nitric oxide and nitrosative stress: growth, "omic," and physiological methods. Methods in Enzymology 2008, 437, 499-519. 13.Kennedy, M. C.; Antholine, W. E.; Beinert, H., An EPR investigation of the products of the reaction of cytosolic and mitochondrial aconitases with nitric oxide. Journal of Biological Chemistry 1997, 272 (33), 20340-7. 14.Varghese, S.; Tang, Y.; Imlay, J. A., Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. Journal of Bacteriology 2003, 185 (1), 221-30. 15.Duan, X.; Yang, J.; Ren, B.; Tan, G.; Ding, H., Reactivity of nitric oxide with the [4Fe-4S] cluster of dihydroxyacid dehydratase from Escherichia coli. The Biochemical Journal 2009, 417 (3), 783-9. 16.Kuo, C. F.; Mashino, T.; Fridovich, I., alpha, beta-Dihydroxyisovalerate dehydratase. A superoxide-sensitive enzyme. Journal of Biological Chemistry 1987, 262 (10), 4724-7. 17.Keyer, K.; Imlay, J. A., Inactivation of dehydratase [4Fe-4S] clusters and disruption of iron homeostasis upon cell exposure to peroxynitrite. Journal of Biological Chemistry 1997, 272 (44), 27652-9. 18.Djaman, O.; Outten, F. W.; Imlay, J. A., Repair of oxidized iron-sulfur clusters in Escherichia coli. Journal of Biological Chemistry 2004, 279 (43), 44590-9. 19.Justino, M. C.; Vicente, J. B.; Teixeira, M.; Saraiva, L. M., New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. Journal of Biological Chemistry 2005, 280 (4), 2636-43. 20.Justino, M. C.; Almeida, C. C.; Goncalves, V. L.; Teixeira, M.; Saraiva, L. M., Escherichia coli YtfE is a di-iron protein with an important function in assembly of iron-sulphur clusters. FEMS Microbiology Letters 2006, 257 (2), 278-84. 21.Justino, M. C.; Almeida, C. C.; Teixeira, M.; Saraiva, L. M., Escherichia coli di-iron YtfE protein is necessary for the repair of stress-damaged iron-sulfur clusters. Journal of Biological Chemistry 2007, 282 (14), 10352-9. 22.Overton, T. W.; Justino, M. C.; Li, Y.; Baptista, J. M.; Melo, A. M.; Cole, J. A.; Saraiva, L. M., Widespread distribution in pathogenic bacteria of di-iron proteins that repair oxidative and nitrosative damage to iron-sulfur centers. Journal of Bacteriology 2008, 190 (6), 2004-13. 23.Vine, C. E.; Justino, M. C.; Saraiva, L. M.; Cole, J., Detection by whole genome microarrays of a spontaneous 126-gene deletion during construction of a ytfE mutant: confirmation that a ytfE mutation results in loss of repair of iron-sulfur centres in proteins damaged by oxidative or nitrosative stress. Journal of Microbiological Methods 2010, 81 (1), 77-9. 24.Nobre, L. S.; Lousa, D.; Pacheco, I.; Soares, C. M.; Teixeira, M.; Saraiva, L. M., Insights into the structure of the diiron site of RIC from Escherichia coli. FEBS Letters 2015, 589 (4), 426-431. 25.Lo, F. C.; Hsieh, C. C.; Maestre-Reyna, M.; Chen, C. Y.; Ko, T. P.; Horng, Y. C.; Lai, Y. C.; Chiang, Y. W.; Chou, C. M.; Chiang, C. H.; Huang, W. N.; Lin, Y. H.; Bohle, D. S.; Liaw, W. F., Crystal Structure Analysis of the Repair of Iron Centers Protein YtfE and Its Interaction with NO. Chemistry - A European Journal 2016, 22 (28), 9768-76. 26.Raposo, C.; Pérez, N.; Almaraz, M.; Mussons, M. L.; Caballero, M. C.; Morán, J. R., A cyclohexane spacer for phosphate receptors. Tetrahedron Letters 1995, 36 (18), 3255-3258. 27.Dietrich, B.; Hosseini, M. W.; Lehn, J. M.; Sessions, R. B., Anion receptor molecules. Synthesis and anion-binding properties of polyammonium macrocycles. Journal of the American Chemical Society 1981, 103 (5), 1282-1283. 28.Ikeda, A.; Shinkai, S., Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. Chemical Reviews 1997, 97 (5), 1713-1734. 29.Hirsch, A. K.; Fischer, F. R.; Diederich, F., Phosphate recognition in structural biology. Angewandte Chemie International Edition in English 2007, 46 (3), 338-52. 30.Milby, T. H.; Baselt, R. C., Hydrogen sulfide poisoning: clarification of some controversial issues. American Journal of Industrial Medicine 1999, 35 (2), 192-5. 31.Moyer, B. A.; Custelcean, R.; Hay, B. P.; Sessler, J. L.; Bowman-James, K.; Day, V. W.; Kang, S.-O., A Case for Molecular Recognition in Nuclear Separations: Sulfate Separation from Nuclear Wastes. Inorganic Chemistry 2013, 52 (7), 3473-3490. 32.Ravikumar, I.; Ghosh, P., Recognition and separation of sulfate anions. Chemical Society Reviews 2012, 41 (8), 3077-3098. 33.Gale, P. A.; Camiolo, S.; Chapman, C. P.; Light, M. E.; Hursthouse, M. B., Hydrogen-bonding pyrrolic amide cleft anion receptors. Tetrahedron Letters 2001, 42 (30), 5095-5097. 34.Piatek, P.; Jurczak, J., A selective colorimetric anion sensor based on an amide group containing macrocycle. Chemical Communications 2002, (20), 2450-2451. 35.Medrano, F.; Lujano, S.; Godoy-Alcantar, C.; Tlahuext, H., Crystal structure of 1,3-bis-(1,3-dioxoisoindolin-1-yl)urea dihydrate: a urea-based anion receptor. Acta Crystallographica Section E Structure Reports Online 2014, 70 (Pt 11), 373-5. 36.Edwards, P. R.; Hiscock, J. R.; Gale, P. A.; Light, M. E., Carbamate complexation by urea-based receptors: studies in solution and the solid state. Organic & Biomolecular Chemistry 2010, 8 (1), 100-106. 37.Zhang, Z.; Schreiner, P. R., (Thio)urea organocatalysis-What can be learnt from anion recognition? Chemical Society Reviews 2009, 38 (4), 1187-1198. 38.Král, V.; Schmidtchen, F. P.; Lang, K.; Berger, M., Anion-Controlled Assembly of Porphyrin−Bicyclic Guanidine Conjugates. Organic Letters 2002, 4 (1), 51-54. 39.Kumar, C. D.; Sirisha, K.; Dhaked, D. K.; Lokesh, P.; Sarma, A. V. S.; Bharatam, P. V.; Kantevari, S.; Sripadi, P., Investigation of Anion−π Interactions Involving Thiophene Walls Incorporated Calix[4]pyrroles. The Journal of Organic Chemistry 2015, 80 (3), 1746-1753. 40.Sessler, J. L.; Kim, S. K.; Gross, D. E.; Lee, C.-H.; Kim, J. S.; Lynch, V. M., Crown-6-calix[4]arene-Capped Calix[4]pyrrole: An Ion-Pair Receptor for Solvent-Separated CsF Ions. Journal of the American Chemical Society 2008, 130 (39), 13162-13166. 41.Caltagirone, C.; Gale, P. A.; Hiscock, J. R.; Brooks, S. J.; Hursthouse, M. B.; Light, M. E., 1,3-Diindolylureas: high affinity dihydrogen phosphate receptors. Chemical Communications 2008, (26), 3007-3009. 42.Arunachalam, M.; Suresh, E.; Ghosh, P., Hexabromide salt of a tiny octaazacryptand as a receptor for encapsulation of lower homolog halides: structural evidence on halide selectivity inside the tiny cage. Tetrahedron 2007, 63 (46), 11371-11376. 43.Fuentes de Arriba, A. L.; Turiel, M. G.; Simon, L.; Sanz, F.; Boyero, J. F.; Muniz, F. M.; Moran, J. R.; Alcazar, V., Sulfonamide carbazole receptors for anion recognition. Organic & Biomolecular Chemistry 2011, 9 (24), 8321-8327. 44.Uppadine, L. H.; Redman, J. E.; Dent, S. W.; Drew, M. G. B.; Beer, P. D., Ion Pair Cooperative Binding of Potassium Salts by New Rhenium(I) Bipyridine Crown Ether Receptors. Inorganic Chemistry 2001, 40 (12), 2860-2869. 45.Danby, A.; Seib, L.; Alcock, N. W.; Bowman-James, K., Novel structural determination of a bilayer network formed by a tripodal lipophilic amide in the presence of anions. Chemical Communications 2000, (11), 973-974. 46.Galan, H.; Murillo, M. T.; Quesada, R.; Escudero-Adan, E. C.; Benet-Buchholz, J.; Prados, P.; de Mendoza, J., A calixarene dendron with surface congestion at the first generation. Chemical Communications 2010, 46 (7), 1044-1046. 47.Arunachalam, M.; Ghosh, P., Formation of a nitrate zipped dimeric capsule and un-zipping by chloride doping. Chemical Communications 2009, (22), 3184-3186. 48.Choi, J. K.; Kim, S. H.; Yoon, J.; Lee, K. H.; Bartsch, R. A.; Kim, J. S., A PCT-based, pyrene-armed calix[4]crown fluoroionophore. Journal of Organic Chemistry 2006, 71 (21), 8011-5. 49.Kim, S. K.; Bok, J. H.; Bartsch, R. A.; Lee, J. Y.; Kim, J. S., A Fluoride-Selective PCT Chemosensor Based on Formation of a Static Pyrene Excimer. Organic Letters 2005, 7 (22), 4839-4842. 50.Liu, B.; Bazan, G. C., Optimization of the Molecular Orbital Energies of Conjugated Polymers for Optical Amplification of Fluorescent Sensors. Journal of the American Chemical Society 2006, 128 (4), 1188-1196. 51.Banerjee, A.; Sahana, A.; Guha, S.; Lohar, S.; Hauli, I.; Mukhopadhyay, S. K.; Sanmartín Matalobos, J.; Das, D., Nickel(II)-Induced Excimer Formation of a Naphthalene-Based Fluorescent Probe for Living Cell Imaging. Inorganic Chemistry 2012, 51 (10), 5699-5704. 52.Kim, S. K.; Lee, S. H.; Lee, J. Y.; Lee, J. Y.; Bartsch, R. A.; Kim, J. S., An Excimer-Based, Binuclear, On−Off Switchable Calix[4]crown Chemosensor. Journal of the American Chemical Society 2004, 126 (50), 16499-16506. 53.Chandrasekhar, V.; Pandey, M. D., Fluorescence sensing of Cu2+ and Hg2+ by a dipyrene ligand involving an excimer-switch off mechanism. Tetrahedron Letters 2011, 52 (16), 1938-1941. 54.Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P., New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chemical Society Reviews 2011, 40 (7), 3483-95. 55.Wu, J.-S.; Liu, W.-M.; Zhuang, X.-Q.; Wang, F.; Wang, P.-F.; Tao, S.-L.; Zhang, X.-H.; Wu, S.-K.; Lee, S.-T., Fluorescence Turn On of Coumarin Derivatives by Metal Cations: A New Signaling Mechanism Based on C=N Isomerization. Organic Letters 2007, 9 (1), 33-36. 56.Datsenko, K. A.; Wanner, B. L., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America 2000, 97 (12), 6640-5. 57.Bodenmiller, D. M.; Spiro, S., The yjeB (nsrR) Gene of Escherichia coli Encodes a Nitric Oxide-Sensitive Transcriptional Regulator. Journal of bacteriology 2006, 188 (3), 874-881. 58.Spiro, S., Regulators of bacterial responses to nitric oxide. FEMS Microbiol Reviews 2007, 31 (2), 193-211. 59.Albani, J. R., Chapter 4 - Fluorescence Quenching. In Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies, Elsevier Science: Amsterdam, 2004; pp 141-192.
|