跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/21 23:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾丹雅
研究生(外文):Chung, Tan-Ya
論文名稱:吲哚-3-乙酸誘導鏈帶藻的表型可塑性
論文名稱(外文):Indole-3-acetic acid-induced phenotypic plasticity in the coenobia alga Desmodesmus
指導教授:周睿鈺周睿鈺引用關係
指導教授(外文):Jui-Yu Chou
口試委員:王瑋龍劉少倫周睿鈺
口試委員(外文): Jui-Yu Chou
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:46
中文關鍵詞:定型群體藻類鏈帶藻吲哚-3-乙酸微藻表型可塑性
外文關鍵詞:CoenobiaDesmodesmusindole-3-acetic acidmicroalgaephenotypic plasticity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:394
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
表型可塑性是指同一基因型的生物會因環境的波動而改變其生理、形態或行為的能力。而這樣改變其表型的能力對於生物演化是否成功佔有重要的關鍵因素。生物及非生物因子皆可誘導表型可塑性,其導致的表型是非常多變的,從易感性到高度一體化和適應性的表型都有。淡水綠藻鏈帶藻(Desmodesmus)和Scenedesmus(Scenedesmaceae,Chlorophyta)具有高度的變動性使它們適應變動的環境。在天然水域中,微藻與微生物之間會有許多物理及生化的交互作用,然而這些相互作用對藻類表型可塑性的關聯卻尚未被理解清楚。先前的研究顯示許多與微藻相關的微生物可以產生吲哚-3-乙酸(IAA)。此外,在研究結果中發現IAA也會影響微生物的基因表達,可能是微生物溝通的信號因子。在本篇研究中發現IAA會刺激鏈帶藻產生表型可塑性並抑制其生長。鏈帶藻以IAA處理後,其形態會急劇改變。隨著IAA濃度的增加,unicells的比例會增加,而unicells與large cells相比,其沉降的速度較慢。另外,我們發現在高濃度IAA的環境下,藻類細胞會因環境變化而誘導油滴的累積。IAA也會影響藻類細胞的光合作用效率,也就代表藻類可感知到植物激素IAA的信號並引起生理變化。在競爭實驗中,結果顯示Pectinodesmus pectinatus (藻類競爭者)會刺激並誘導鏈帶藻細胞產生形態上的改變。同種競爭的相對比例會影響其不同顆數的細胞比例。從上述的結果可得知,微藻可藉由表型可塑性來控制自身的表型變化,以便在應對環境挑戰時優化其效益成本比來降低生存風險。
Phenotypic plasticity is the ability of a single genotype of organism to display variable phenotypes in response to fluctuating environments. The ability to alter their physiology, morphology and/or behavior in response to a change in the environmental conditions plays a crucial role for the evolutionary success of organisms. Virtually any abiotic or biotic factor can serve to induce plasticity, and resulting changes vary from harmful susceptibilities to highly integrated and adaptive alternative phenotypes. Organisms belonging to the freshwater green algae Desmodesmus and Scenedesmus (Scenedesmaceae, Chlorophyta) are characterized by a high degree of flexibility and allow them to adapt fluctuating environments. In natural waters, the importance of physical associations and biochemical interactions between microalgae and microorganisms is generally well appreciated, but the significance of these interactions to algal phenotypic plasticity have not been investigated. Previous studies have shown that many microorganisms associated with microalgae can produce indole-3-acetic acid (IAA). In addition, several studies have shown that IAA is a signaling molecule in microorganisms because it affects gene expression in several microorganisms. In our study, we found that the IAA can exert stimulatory and inhibitory effects on Desmodesmus. The morphology of Desmodesmus monocultures changed drastically under exposure to IAA compared with the control. The proportion of Desmodesmus unicells increased by increasing the concentration of environmental IAA, and these unicells experience a lower risk of sedimentation than large cells. Furthermore, we found that the accumulation of lipid droplets in algal cells grown with high concentration of IAA is specifically induced in response to the environmental change. The photosynthetic efficiency of algal cells was affected by its responses, suggesting algae can receive the phytohormone IAA signal in the environment and elicit physiological changes. Results also demonstrated that the presence of a competitor Pectinodesmus pectinatus further stimulate the inducible colony formation of Desmodesmus population. The proportion of induced colonies in cultures was dependent on the relative abundance of competitors. These results demonstrate that phenotypic plasticity allows microalgae to undergo controllable phenotypic changes to reduce fitness costs by optimizing the benefit-to-cost ratios when responding to environmental challenge.
致謝 I
摘要 II
Abstract III
Contents V
List of Figures VI
List of Tables VII
Chapter 1. Introduction 1
Chapter 2. Materials and Methods 6
2.1 The microalgae growth conditions. 7
2.2 Growing Conditions for Algae 9
2.3 DNA extraction, PCR amplification and DNA sequencing. 9
2.4 Oil body staining. 10
2.5 Microscopic observation. 10
2.6 Induction experiment under competition with Scenedesmus pectinatus. 11
2.7 Sedimentation experiment. 11
2.8 PAM fluorometry measurements. 12
2.9 Spectrophotometric determination of carotenoids and chlorophyll contents. 13
2.10 Statistical analysis. 13
Chapter 3. Results 14
3.1 Effect of exogenous IAA on algal growth. 15
3.2 IAA-induced morphological changes in Desmodesmus 17
3.3 IAA-induced physiologic plasticity in Desmodesmus. 22
3.4 Sedimentation experiments 25
3.5 IAA affects ratio of chlorophyll a/b and photosynthetic efficiency. 28
3.6 Competition experiments 32
Chapter 4. Discussion 37
Reference 42
Amprayn, K.-o., Rose, M. T., Kecskés, M., Pereg, L., Nguyen, H. T. & Kennedy, I. R. (2012) Plant growth promoting characteristics of soil yeast (Candida tropicalis HY) and its effectiveness for promoting rice growth. Applied Soil Ecology, 61, 295-299.
Bienfang, P. K. (1981) SETCOL—a technologically simple and reliable method for measuring phytoplankton sinking rates. Canadian Journal of Fisheries and Aquatic Sciences, 38, 1289-1294.
Chia, M. A., Chimdirim, P. K. & Japhet, W. S. (2015) Lead induced antioxidant response and phenotypic plasticity of Scenedesmus quadricauda (Turp.) de Brébisson under different nitrogen concentrations. Journal of applied phycology, 27, 293-302.
Chia, M. A. & Musa, R. I. (2014) Effect of indigo dye effluent on the growth, biomass production and phenotypic plasticity of Scenedesmus quadricauda (Chlorococcales). Anais da Academia Brasileira de Ciências, 86, 419-428.
Contreras-Cornejo, H. A., Macías-Rodríguez, L., Cortés-Penagos, C. & López-Bucio, J. (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149, 1579-1592.
Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P. & Del Borghi, M. (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48, 1146-1151.
Corno, G. & Jurgens, K. (2006) Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl Environ Microbiol, 72, 78-86.
Evitt, W. R. (1963) Occurrence of freshwater alga Pediastrum in Cretaceous marine sediments. American Journal of Science, 261, 890-893.
Franssen, N. R., Stewart, L. K. & Schaefer, J. F. (2013) Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats. Ecol Evol, 3, 4648-4657.
Fraser, L. H., Greenall, A., Carlyle, C., Turkington, R. & Friedman, C. R. (2009) Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature. Ann Bot, 103, 769-775.
Fu, S.-F., Wei, J.-Y., Chen, H.-W., Liu, Y.-Y., Lu, H.-Y. & Chou, J.-Y. (2015) Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant signaling & behavior, 10, e1048052.
Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., et al. (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell, 112, 219-230.
Goudjal, Y., Toumatia, O., Sabaou, N., Barakate, M., Mathieu, F. & Zitouni, A. (2013) Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World Journal of Microbiology and Biotechnology, 29, 1821-1829.
Govender, T., Ramanna, L., Rawat, I. & Bux, F. (2012) BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresource Technology, 114, 507-511.
Hegewald, E. & Wolf, M. (2003) Phylogenetic relationships of Scenedesmus and Acutodesmus (Chlorophyta, Chlorophyceae) as inferred from 18S rDNA and ITS-2 sequence comparisons. Plant Systematics and Evolution, 241, 185-191.
Helmus, M. R., Mercado-Silva, N. & Vander Zanden, M. J. (2013) Subsidies to predators, apparent competition and the phylogenetic structure of prey communities. Oecologia, 173, 997-1007.
Holt, R. D., Grover, J. & Tilman, D. (1994) Simple rules for interspecific dominance in systems with exploitative and apparent competition. The American Naturalist, 144, 741-771.
Ichimura, T. & Watanabe, M. (1974) Closterium calosporum complex from the Ryukyu Islands: Variation and taxonomical problems. Mem Natl Sci Mus Tokyo.
Jusoh, M., Loh, S. H., Chuah, T. S., Aziz, A. & San Cha, T. (2015) Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase. Phytochemistry, 111, 65-71.
Krause, K., Henke, C., Asiimwe, T., Ulbricht, A., Klemmer, S., Schachtschabel, D., et al. (2015) Biosynthesis and secretion of indole-3-acetic acid and its morphological effects on Tricholoma vaccinum-spruce ectomycorrhiza. Applied and environmental microbiology, 81, 7003-7011.
Lürling, M. (2003) Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. In Proceedings of the Annales de Limnologie-International Journal of Limnology, pp. 85-101. EDP Sciences.
Lürling, M. & Van Donk, E. (2000) Grazer‐induced colony formation in Scenedesmus: are there costs to being colonial? Oikos, 88, 111-118.
Liu, Z.-Y., Wang, G.-C. & Zhou, B.-C. (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource technology, 99, 4717-4722.
Ludwig-Müller, J. (2015) Bacteria and fungi controlling plant growth by manipulating auxin: balance between development and defense. Journal of plant physiology, 172, 4-12.
Menden-Deuer, S. & Rowlett, J. (2014) Many ways to stay in the game: individual variability maintains high biodiversity in planktonic microorganisms. Journal of The Royal Society Interface, 11, 20140031.
Meza, B., de-Bashan, L. E., Hernandez, J.-P. & Bashan, Y. (2015) Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense. Research in microbiology, 166, 399-407.
Msanne, J., Xu, D., Konda, A. R., Casas-Mollano, J. A., Awada, T., Cahoon, E. B., et al. (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry, 75, 50-59.
Neustupa, J. & Hodac, L. (2005) Changes in shape of the coenobial cells of an experimental strain of Pediastrum duplex var. duplex (Chlorophyta) reared at different pHs. Preslia, 77, 439-452.
Ng, F.-L., Phang, S.-M., Periasamy, V., Yunus, K. & Fisher, A. C. (2014) Evaluation of algal biofilms on Indium Tin Oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance. PloS one, 9, e97643.
Pan, Y.-Y., Wang, S.-T., Chuang, L.-T., Chang, Y.-W. & Chen, C.-N. N. (2011) Isolation of thermo-tolerant and high lipid content green microalgae: oil accumulation is predominantly controlled by photosystem efficiency during stress treatments in Desmodesmus. Bioresource technology, 102, 10510-10517.
Pena-Castro, J. M., Martinez-Jeronimo, F., Esparza-Garcia, F. & Canizares-Villanueva, R. O. (2004) Phenotypic plasticity in Scenedesmus incrassatulus (Chlorophyceae) in response to heavy metals stress. Chemosphere, 57, 1629-1636.
Platt, T., Gallegos, C. & Harrison, W. (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research (USA).
Qian, H., Chen, W., Li, J., Wang, J., Zhou, Z., Liu, W., et al. (2009) The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. Aquatic Toxicology, 92, 250-257.
Reynolds, C. S. (2006) The ecology of phytoplankton. Cambridge University Press.
Rojo, C., Segura, M., Rodrigo, M. A. & Salazar, G. (2009) Factors controlling the colonial structure of Pediastrum tetras (Chlorophyceae). Hydrobiologia, 617, 143-155.
Rumin, J., Bonnefond, H., Saint-Jean, B., Rouxel, C., Sciandra, A., Bernard, O., et al. (2015) The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnology for biofuels, 8, 42.
Sheehan, J., Dunahay, T., Benemann, J. & Roessler, P. (1998) A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. National Renewable Energy Laboratory, 328.
Spaepen, S. & Vanderleyden, J. (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol, 3.
Spaepen, S., Vanderleyden, J. & Remans, R. (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS microbiology reviews, 31, 425-448.
Steele, J. H., Thorpe, S. A. & Turekian, K. K. (2009) Elements of physical oceanography: a derivative of the encyclopedia of ocean sciences. Academic Press.
Sultan, S. E. (2000) Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537-542.
Teale, W. D., Paponov, I. A. & Palme, K. (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nature reviews. Molecular cell biology, 7, 847.
Tsarenko, P. M., Hegewald, F. & Krientz, L. (1996) LM and SEM studies on Scenedesmus of Lake Tollense (Baltic Lake District, Germany). ARCHIV FUR HYDROBIOLOGIE-SUPPLEMENT-, 116, 13-36.
Wang, S.-T., Pan, Y.-Y., Liu, C.-C., Chuang, L.-T. & Chen, C.-N. N. (2011) Characterization of a green microalga UTEX 2219-4: effects of photosynthesis and osmotic stress on oil body formation. Bot Stud, 52, 305-312.
Zhu, X., Wang, J., Chen, Q., Chen, G., Huang, Y. & Yang, Z. (2016) Costs and trade-offs of grazer-induced defenses in Scenedesmus under deficient resource. Scientific reports, 6, 22594.
Zhu, X., Wang, J., Lu, Y., Chen, Q. & Yang, Z. (2015) Grazer-induced morphological defense in Scenedesmus obliquus is affected by competition against Microcystis aeruginosa. Scientific reports, 5, 12743.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top