(3.239.192.241) 您好!臺灣時間:2021/03/02 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周緯傑
研究生(外文):Chou,Wei-Chieh
論文名稱:洩漏存活免憑證金鑰封裝加密機制
論文名稱(外文):Leakage-Resilient Certificateless Key Encapsulation Scheme
指導教授:曾育民曾育民引用關係
指導教授(外文):Tseng,Yuh-Min
口試委員:曾育民黃森山曾顯文
口試委員(外文):Tseng,Yuh-MinHuang,Sen-ShanTseng,Hsien-Wen
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:36
中文關鍵詞:洩漏存活旁路攻擊連續洩漏模式免憑證加密通用雙線性群模式
外文關鍵詞:Leakage resilienceSide-channel attacksContinual leakage modelCertificateless encryptionGeneric bilinear group model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
先前的公開金鑰系統(包括傳統、以身份為基礎或是免憑證)的標準攻擊者模式(adversary model)通常具有一種自然假設,也就是永久或暫時的私密/秘密(private/secret)金鑰都必須安全地被保存,且其他內部狀態也不會洩漏給攻擊者。但是在實務上,因為有一種被稱為旁路攻擊(side-channel attacks)的新型態威脅,導致難以防備這些秘密數據遭到洩漏的所有可能性。透過旁路攻擊,攻擊者可以獲得這些秘密數據的部分資訊,以至於一些現有的攻擊者模式已經不足以去抵擋。事實上最近,抵擋旁路攻擊的洩漏存活密碼學(leakage-resilient cryptography)設計已經引起研究學者的廣大注意。然而直到目前為止,尚未有在連續洩漏模式下安全的洩漏存活免憑證密碼的相關機制被提出。在本論文,我們將提出第一個在連續洩漏模式下安全的洩漏存活免憑證金鑰封裝加密(LR-CL-KE)機制,在通用雙線性群(generic bilinear group, GBG)模式下,我們將正規化證明所提出的LR-CL-KE機制,能夠抵擋在新的攻擊者模式下的兩種攻擊者(包括外部攻擊者及honest-but-curious KGC)。
The previous adversary models of public key cryptography usually have a nature assumption that permanent/temporary secret (private) keys must be kept safely and other internal states are not leaked to an adversary. However, in practice, it is difficult to keep away from all possible kinds of leakage on these secret data due to a new kind of threat, called “side-channel attacks”. By side-channel attacks, the adversary could obtain some partial information of these secret data so that some existing adversary models could be insufficient. Indeed, the study of leakage-resilient cryptography resistant to side-channel attacks has received significant attention recently. Up to date, no work has been done on the design of leakage-resilient certificateless key encapsulation encryption (LR-CL-KE) schemes under the continual leakage model. In this article, we propose the first LR-CL-KE scheme under the continual leakage model. In the generic bilinear group (GBG) model, we formally prove that our LR-CL-KE scheme is semantically secure against adaptive chosen ciphertext attacks for both Type I and Type II adversaries.
中文摘要-------------------------------- I
ABSTRACT------------------------------- II
CONTENTS------------------------------- III
List of Tables------------------------- IV
CHAPTER 1 Introduction--------------- 1
1.1 Motivation------------------------- 1
1.2 Related Work----------------------- 2
1.3 Contributions---------------------- 3
1.4 Organization----------------------- 3
CHAPTER 2 Preliminaries-------------- 5
2.1 Bilinear Groups-------------------- 5
2.2 Generic Bilinear Groups Model------ 5
2.3 Entropy---------------------------- 6
CHAPTER 3 Leakage-Resilient Certificateless Key Encapsulation Scheme------------------- 8
3.1 Framework-------------------------- 8
3.2 Security Notions------------------- 10
CHAPTER 4 Concrete Scheme------------ 13
CHAPTER 5 Security Analysis---------- 16
CHAPTER 6 Performance Analysis------- 32
CHAPTER 7 Conclusions and Future Work 33
REFERENCES----------------------------- 34
References

[1] A. Shamir, “Identity-based cryptosystems and signature schemes,” Proc. CRYPTO’84, LNCS 196, Springer-Verlag, 1984, pp. 47–53.
[2] S.S. Al-Riyami, and K.G. Paterson, “Certificateless public key cryptography,” Proc. ASIACRYPT’03, LNCS 2894, Springer-Verlag, 2003, pp. 452–473.
[3] B. Libert, and J.J. Quisquater, “On constructing certificateless cryptosystems from identity based encryption,” Proc. PKC’06, LNCS 3958, Springer-Verlag, 2006, pp. 474–490.
[4] Y.H. Hwang, J.K. Liu, and S.S.M. Chow, “Certificateless public key encryption secure against malicious KGC attacks in the standard model,” Journal of Universal Computer Science, vol. 14, no. 3, 2008, pp. 463–480.
[5] T.T. Tsai, Y.M. Tseng, and S.S. Huang, “Efficient revocable certificateless public key encryption with a delegated revocation authority,” Security and Communication Networks, vol. 8, no. 18, 2015, pp. 3713–3725.
[6] T.T. Tsai, and Y.M. Tseng, “Revocable certificateless public key encryption,” IEEE Systems Journal, vol. 9, no. 3, 2015, pp. 824–833.
[7] X. Huang, Y. Mu, W. Susilo, D. Wong, and W. Wu, “Certificateless signature revisited,” Proc. ACISP’07, LNCS 4586, Springer-Verlag, 2007, pp. 308–322.
[8] B. Hu, D. Wong, Z. Zhang, and X. Deng, “Certificateless signature: a new security model and an improved generic construction,” Designs, Codes and Cryptography, vol. 42, no. 2, 2007, pp. 109–126.
[9] Y.H. Hung, S.S. Huang, Y.M. Tseng, and T.T. Tsai, “Certificateless signature with strong unforgeability in the standard model,” Informatica, vol. 26, no. 4, 2015, pp. 663–684.
[10] Y.H. Hung, Y.M. Tseng, and S.S. Huang, “A revocable certificateless short signature scheme and its authentication application”, Informatica, vol. 27, no. 3, 2016, pp. 549-572.
[11] P.C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems,” Proc. CRYPTO’96, LNCS 1163, Springer-Verlag, 1996, pp. 104–113.
[12] D. Brumley, and D. Boneh, “Remote timing attacks are practical,” Computer Networks, vol. 48, no. 5, 2005, pp. 701–716.
[13] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” Proc. CRYPTO’99, LNCS 1666, Springer-Verlag, 1999, pp. 388–397.
[14] D. Boneh, R.A. Demillo, and R.J. Lipton, “On the importance of checking cryptographic protocols for faults,” Proc. EUROCRYPT’97, LNCS 1233, Springer-Verlag, 1997, pp. 37–51.
[15] E. Biham, Y. Carmeli, and A. Shamir, “Bug attacks,” Proc. CRYPTO’08, LNCS 5157, Springer-Verlag, 2008, pp. 221–240.
[16] A. Akavia, S. Goldwasser, and V. Vaikuntanathan, “Simultaneous hardcore bits and cryptography against memory attacks,” Proc. TCC’09, LNCS 5444, Springer-Verlag, 2009, pp. 474–495.
[17] J. Alwen, Y. Dodis, and D. Wichs, “Leakage-resilient public-key cryptography in the bounded-retrieval model,” Proc. CRYPTO’09, LNCS 5677, Springer-Verlag, 2009, pp. 36–54.
[18] J. Katz, and V. Vaikuntanathan, “Signature schemes with bounded leakage resilience,” Proc. ASIACRYPT’09, LNCS 5912, Springer-Verlag, 2009, pp. 703–720.
[19] Z. Brakerski, Y.T. Kalai, J. Katz, and V. Vaikuntanathan, “Cryptography resilient to continual memory leakage,” Proc. 51st Annual IEEE Symposium on Foundations of Computer Science, IEEE Press, 2010, pp. 501–510.
[20] Y. Dodis, K. Haralambiev, A. Lopez-Alt, and D. Wichs, “Cryptography against continuous memory attacks,” Proc. 51st Annual IEEE Symposium on Foundations of Computer Science, IEEE Press, 2010, pp. 511–520.
[21] D. Galindo, and S. Virek, “A practical leakage-resilient signature scheme in the generic group model,” Proc. SAC’12, LNCS 7707, Springer-Verlag, 2013, pp. 50–65.
[22] J.D. Wu, Y.M. Tseng, and S.S. Huang, “Leakage-resilient ID-based signature scheme in the generic bilinear group model,” Security and Communication Networks, vol. 9, no. 17, 2016, pp. 3987-4001.
[23] M. Naor, and G. Segev, “Public-key cryptosystems resilient to key leakage,” Proc. CRYPTO’09, LNCS 5677, Springer-Verlag, 2009, pp. 18–35.
[24] M. Naor, and G. Segev, “Public-key cryptosystems resilient to key leakage,” SIAM Journal on Computing, vol. 41, no. 4, 2012, pp. 772–814.
[25] S. Liu, J. Weng, and Y. Zhao, “Efficient public key cryptosystem resilient to key leakage chosen ciphertext attacks,” Proc. CTRSA’13, LNCS 7779, Springer-Verlag, 2013, pp. 84–100.
[26] S. Li, F. Zhang, Y. Sun, and L. Shen, “Efficient leakage-resilient public key encryption from DDH assumption,” Cluster Computing, vol. 16, no. 4, 2013, pp. 797–806.
[27] E. Kiltz, and K. Pietrzak, “Leakage resilient elgamal encryption,” Proc. ASIACRYPT’10, LNCS 6477, Springer-Verlag, 2010, pp. 595–612.
[28] D. Boneh, X. Boyen, and E.J. Goh, “Hierarchical identity-based encryption with constant size ciphertext,” Proc. EUROCRYPT’05, LNCS 3494, Springer-Verlag, 2005, pp. 440–456.
[29] D. Galindo, J. Grobschadl, Z. Liu, P.K. Vadnala, and S. Vivek, “Implementation of a leakage-resilient ElGamal key encapsulation mechanism,” Journal of Cryptographic Engineering, vol. 6, no. 3, 2016, pp.229–238.
[30] T.H. Yuen, S.S.M. Chow, Y. Zhang, and S.M. Yiu, “Identity-based encryption resilient to continual auxiliary leakage,” Proc. EUROCRYPT’12, LNCS 7237, Springer-Verlag, 2012, pp. 117–134.
[31] J. Li, Y. Guo, Q. Yu, Y. Lu, and Y. Zhang, “Provably secure identity‐based encryption resilient to post‐challenge continuous auxiliary input leakage,” Security and Communication Network, vol. 9, no. 10, 2016, pp. 1016–1024.
[32] H. Xiong, T.H. Yuen, C. Zhang, S.M. Yiu, and Y.J. He, “Leakage-resilient certificateless public key encryption,” Proc. the first ACM workshop on Asia public-key cryptography, ACM Press, 2013, pp. 13–22.
[33] Y. Zhou, B. Yang, and W. Zhang, “Provably secure and efficient leakage-resilient certificateless signcryption scheme without bilinear pairing,” Discrete Applied Mathematics, vol. 204, 2016, pp. 185–202.
[34] D. Boneh, and M. Franklin, “Identity-based encryption from the Weil pairing,” Proc. CRYPTO’01, LNCS2 139, Springer-Verlag, 2001, pp. 213–229.
[35] B. Waters, “Efficient identity-based encryption without random oracles,” Proc. EUROCRYPT’05, LNCS 3494, Springer-Verlag, 2005, pp. 114–127.
[36] M. Scott, “On the efficient implementation of pairing-based protocols,” Proc. Cryptography and Coding, LNCS 7089, Springer-Verlag, 2011, pp. 296–308.
[37] V. Shoup, “Lower bounds for discrete logarithms and related problems,” Proc. EUROCRYPT’97, LNCS 1233, Springer-Verlag, 1997, pp. 256–266.
[38] U. Maurer, and S. Wolf, “Lower bounds on generic algorithms in groups,” Proc. EUROCRYPT’98, LNCS 1403, Springer-Verlag, 1998, pp. 72–84.
[39] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate strong keys from biometrics and other noisy data,” SIAM Journal on Computing, vol. 38, no. 1, 2008, pp. 97–139.
[40] R. Zippel, “Probabilistic algorithms for sparse polynomials,” Proc. EUROSAM’79, LNCS 72, Springer-Verlag, 1979, pp. 216–226.
[41] J.T. Schwartz, “Fast probabilistic algorithms for verification of polynomial identities,” Journal of the ACM, vol. 27, no. 4, 1980, pp. 701–717.
[42] A. B. Lewko, Y. Rouselakis, and B. Waters. “Achieving leakage resilience through dual system encryption,” Proc. TCC, LNCS 6597, Springer-Verlag, 2011, pp. 70–88.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔