|
Reference Akaike H. (1973). Information theory and the maximum likelihood principle. In Interna- tional Symposium on Information Theory (V. Petrov and F. Cs aki eds.), Akademiai Ki ado, Budapest, 267-281. Akaike, H. (1979). A Bayesian extension of the minimum AIC procedure of autoregressive model tting. Biometrika, 66, 237-242. Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (second edition). Springer-Verlag: New York. Chen, C. S. (2016). Variable selection and spatial prediction under a misspeci ed model. Master Thesis: National Changhua University of Education, Taiwan. Chen, C. S. and Huang, H. C. (2012). Geostatistical model averaging based on conditional information criteria. Environmental and Ecological Statistics, 19, 23-35. Chen, C. S., Yang, H. D., and Li, Y. (2014). A stabilized and versatile spatial prediction method for geostatistical models. Environmetrics, 25, 127-141. Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model Averaging. Cambridge University Press: Cambridge. Cressie, N. and Lahiri, S. N. (1993). The asymptotic distribution of REML estimators. Journal of Multivariate Analysis, 45, 217-233. Cressie, N. and Lahiri, S. N. (1996). Asymptotics for REML estimation of spatial covariance parameters. Journal of Statistical Planning and Inference, 50, 327-341. Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large data sets. Journal of the Royal Statistical Society: Series B, 70, 209-226. Davis, B. M. (1987). Uses and abuses of cross-validation in geostatistics. Mathematical Geology, 19, 241-248. Foster, D. P. and George, E. I. (1994). The risk in ation criterion for multiple regression. The Annals of Statistics, 22, 1947-1975. Furrer, R., Genton, M. G., and Nychka, D. (2006). Covariance tapering for interpolation of large spatial datasets. Journal of Computational and Graphical Statistics, 15, 502-523. Ghosh, D. and Yuan Z. (2009). An improved model averaging scheme for logistic regression. Journal of Multivariate Analysis, 100, 1670-1681. Gu C. (2002). Smoothing Spline ANOVA Models. Springer: New York. Hansen, B. E. and Racine, J. (2012). Jackknife model averaging. Journal of Econometrics, 167, 38-46. Hoeting, J. A., Davis, R. A., Merton, A. A., and Thompson, S. E. (2006). Model selection for geostatistical models. Ecological Applications, 16, 87-98. Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999). Bayesian model averaging: A tutorial (with Discussion). Statistical Science, 14, 382-401. Hoeting, J. A. and Olsen, A. (1998). Are the sh safe to eat? Assessing mercury levels in sh in Maine lakes. Statistical Case Studies: A Collaboration Between Academe and Industry (Peck, R., Haugh, L. D., Goodman, A., editors), ASA-SIAM, 1-13. Huang, H. C., Hsu, N. J., Theobald, D., and Breidt, F. J. (2010). Spatial Lasso with ap- plications to GIS model selection. Journal of Computational and Graphical Statistics, 19, 963-983. Hurvich, C. M. and Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297-307. Kaufman, C. G., Schervish, M. J., and Nychka, D. W. (2008). Covariance tapering for likelihood-based estimation in large spatial data sets. Journal of the American Statis- tical Association, 103, 1545-1555. Mat ern, B. (2013). Spatial Variation. Springer Science: Business Media. McGilchrist, C. A. (1989). Bias of ML and REML estimators in regression models with ARMA errors. Journal of Statistical Computation and Simulation, 32, 127-136. Ngo, L. and Brand, R. (2002). Model selection in linear mixed e ects models using SAS Proc Mixed. SAS Global Forum 22. Patterson, H. D. and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58, 545-554. Peck, R., Haugh, L. D., and Goodman, A. (eds) (1998) Statistical Case Studies: a collab- oration between academe and industry. ASA-SIAM Series on Statistics and Applied Probability 3 and 4. Pinheiro, J. C. and Bates, D. M. (2000). Mixed-E ects Models in S and S-PLUS. Springer: New York. Raftery, A. E., Madigan, D., and Hoeting, J. A. (1997). Bayesian model averaging for linear regression models. Journal of the American Statistical Association, 92, 179-191. Schabenberger, O. and Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis. Chapman & Hall/CRC: Boca Raton. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464. Shen, X., Huang, H.-C., and Ye, J. (2004). Adaptive model selection and assessment for exponential family models. Technometrics, 46, 306-317. Vaida, F. and Blanchard, S. (2005). Conditional Akaike information for mixed-e ects models. Biometrika, 92, 351-370. Wan, A. T. K., Zhang, X., and Zou, G. (2010). Least squares model averaging by Mallows criterion. Journal of Econometrics, 156, 277-283. Yang, H. D. and Chen, C. S. (2017). On estimation and prediction of geostatistical regres- sion models via a corrected Stein's unbiased risk estimator. Environmetrics, 28:e2424. doi:10.1002/env.2424.
|