跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 19:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳彥云
研究生(外文):Chen, Yen-Yun
論文名稱:空間迴歸模型的平均
論文名稱(外文):On Study of Spatial Regression Model Averaging
指導教授:陳春樹
指導教授(外文):Chen, Chun-Shu
口試委員:沈仲維蔡秒玉陳春樹
口試日期:2017-06-01
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:統計資訊研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:39
中文關鍵詞:條件訊息準則不穩定性模型平均空間預測變數選取
外文關鍵詞:Conditional information criterionInstabilityModel averagingSpatial predictionVariable selction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
Variable selection is an active research topic and has attracted much attention in many scientific fields. However, if a variable selection process is unstable, inferences based on the selected model may be unreliable. To avoid the influence of selection instability, model averaging becomes a popular technique but has not received much attention especially for spatial regression models. In this thesis, we focus on discussing spatial regression model averaging based on conditional information criteria. We consider relatively few models for averaging, where a novel idea based on the values of information criteria is proposed to determine model weights. It results in the spatial predictor that is comparable to the conventional model averaging approaches and is computationally more efficient. Statistical inferences of the proposed methodology are justified both theoretically and numerically. Finally, an application of a mercury data set for lakes in Maine is analyzed for illustration.
Contents
1 Introduction 1
2 Spatial Regression and Its Prediction 4
2.1 Spatial Regression Models 4
2.2 Parameter Estimation 7
2.3 Spatial Prediction 8
3 Model Selection and Model Averaging 10
3.1 Spatial Predictor After Model Selection 10
3.2 Spatial Predictor After Model Averaging 12
4 The Proposed Methodology 14
4.1 GIC or CGIC in Spatial Regression 14
4.2 Novel Weights for Model Averaging 16
5 Simulation 19
5.1 Simulation Scenarios 19
5.2 Simulation Results 21
6 Application to Mercury Dataset 30
7 Conclusion and Discussion 34
Reference
Akaike H. (1973). Information theory and the maximum likelihood principle. In Interna-
tional Symposium on Information Theory (V. Petrov and F. Cs aki eds.), Akademiai
Ki ado, Budapest, 267-281.
Akaike, H. (1979). A Bayesian extension of the minimum AIC procedure of autoregressive
model tting. Biometrika, 66, 237-242.
Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference:
A Practical Information-Theoretic Approach (second edition). Springer-Verlag: New
York.
Chen, C. S. (2016). Variable selection and spatial prediction under a misspeci ed model.
Master Thesis: National Changhua University of Education, Taiwan.
Chen, C. S. and Huang, H. C. (2012). Geostatistical model averaging based on conditional
information criteria. Environmental and Ecological Statistics, 19, 23-35.
Chen, C. S., Yang, H. D., and Li, Y. (2014). A stabilized and versatile spatial prediction
method for geostatistical models. Environmetrics, 25, 127-141.
Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model Averaging. Cambridge
University Press: Cambridge.
Cressie, N. and Lahiri, S. N. (1993). The asymptotic distribution of REML estimators.
Journal of Multivariate Analysis, 45, 217-233.
Cressie, N. and Lahiri, S. N. (1996). Asymptotics for REML estimation of spatial covariance
parameters. Journal of Statistical Planning and Inference, 50, 327-341.
Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large data sets. Journal
of the Royal Statistical Society: Series B, 70, 209-226.
Davis, B. M. (1987). Uses and abuses of cross-validation in geostatistics. Mathematical
Geology, 19, 241-248.
Foster, D. P. and George, E. I. (1994). The risk in ation criterion for multiple regression.
The Annals of Statistics, 22, 1947-1975.
Furrer, R., Genton, M. G., and Nychka, D. (2006). Covariance tapering for interpolation of
large spatial datasets. Journal of Computational and Graphical Statistics, 15, 502-523.
Ghosh, D. and Yuan Z. (2009). An improved model averaging scheme for logistic regression.
Journal of Multivariate Analysis, 100, 1670-1681.
Gu C. (2002). Smoothing Spline ANOVA Models. Springer: New York.
Hansen, B. E. and Racine, J. (2012). Jackknife model averaging. Journal of Econometrics,
167, 38-46.
Hoeting, J. A., Davis, R. A., Merton, A. A., and Thompson, S. E. (2006). Model selection
for geostatistical models. Ecological Applications, 16, 87-98.
Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999). Bayesian model
averaging: A tutorial (with Discussion). Statistical Science, 14, 382-401.
Hoeting, J. A. and Olsen, A. (1998). Are the sh safe to eat? Assessing mercury levels in
sh in Maine lakes. Statistical Case Studies: A Collaboration Between Academe and
Industry (Peck, R., Haugh, L. D., Goodman, A., editors), ASA-SIAM, 1-13.
Huang, H. C., Hsu, N. J., Theobald, D., and Breidt, F. J. (2010). Spatial Lasso with ap-
plications to GIS model selection. Journal of Computational and Graphical Statistics,
19, 963-983.
Hurvich, C. M. and Tsai, C. L. (1989). Regression and time series model selection in small
samples. Biometrika, 76, 297-307.
Kaufman, C. G., Schervish, M. J., and Nychka, D. W. (2008). Covariance tapering for
likelihood-based estimation in large spatial data sets. Journal of the American Statis-
tical Association, 103, 1545-1555.
Mat ern, B. (2013). Spatial Variation. Springer Science: Business Media.
McGilchrist, C. A. (1989). Bias of ML and REML estimators in regression models with
ARMA errors. Journal of Statistical Computation and Simulation, 32, 127-136.
Ngo, L. and Brand, R. (2002). Model selection in linear mixed e ects models using SAS
Proc Mixed. SAS Global Forum 22.
Patterson, H. D. and Thompson, R. (1971). Recovery of inter-block information when block
sizes are unequal. Biometrika, 58, 545-554.
Peck, R., Haugh, L. D., and Goodman, A. (eds) (1998) Statistical Case Studies: a collab-
oration between academe and industry. ASA-SIAM Series on Statistics and Applied
Probability 3 and 4.
Pinheiro, J. C. and Bates, D. M. (2000). Mixed-E ects Models in S and S-PLUS. Springer:
New York.
Raftery, A. E., Madigan, D., and Hoeting, J. A. (1997). Bayesian model averaging for linear
regression models. Journal of the American Statistical Association, 92, 179-191.
Schabenberger, O. and Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis.
Chapman & Hall/CRC: Boca Raton.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6,
461-464.
Shen, X., Huang, H.-C., and Ye, J. (2004). Adaptive model selection and assessment for
exponential family models. Technometrics, 46, 306-317.
Vaida, F. and Blanchard, S. (2005). Conditional Akaike information for mixed-e ects
models. Biometrika, 92, 351-370.
Wan, A. T. K., Zhang, X., and Zou, G. (2010). Least squares model averaging by Mallows
criterion. Journal of Econometrics, 156, 277-283.
Yang, H. D. and Chen, C. S. (2017). On estimation and prediction of geostatistical regres-
sion models via a corrected Stein's unbiased risk estimator. Environmetrics, 28:e2424.
doi:10.1002/env.2424.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top