(3.238.186.43) 您好!臺灣時間:2021/02/28 12:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張惠慈
研究生(外文):Chang, Hui-Tzu
論文名稱:探討極化效應與載子侷限能力對氮化鋁鎵深紫外光發光二極體光電特性之影響
論文名稱(外文):Investigation of Polarization Effect and Carrier Confinement on Optoelectronic Characteristics in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes
指導教授:郭艶光黃滿芳
口試委員:劉柏挺郭艶光黃滿芳
口試日期:2017-06-30
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:光電科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:85
中文關鍵詞:氮化鋁鎵深紫外光發光二極體極化效應載子侷限能力
外文關鍵詞:AlGaNDeep-Ultraviolet Light-Emitting DiodesPolarization EffectCarrier Confinement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今三族氮化物發光二極體已有相當廣大的發展與應用,從手機、電腦和電視之液晶螢幕背光源到汽車、路燈,到最後幾乎所有照明設備。儘管發光二極體蓬勃發展且技術相當成熟,氮化鋁鎵的深紫外光發光二極體效率和輸出特性相較於氮化銦鎵發光二極體目前還是相當低,氮化鋁鎵深紫外光發光二極體的外部量子效率低的原因包含缺乏高品質的氮化鋁基板或氮化鋁鎵的模板、因p型氮化鎵接觸層吸光導致出光效率不佳、極化電場大導致能帶彎曲、嚴重電子溢流、電洞注入效率低等等。因此,在本論文中,為了改善深紫外光發光二極體的輸出特性,主要以減緩極化效應以及增加載子侷限能力為探討目標。
在第一章當中,針對固態照明的歷史回顧和發展以及紫外光發光二極體之其他領域應用做介紹,並描述氮化物材料中極化效應之相關原理,並提出影響氮化鋁鎵深紫外光發光二極體效率的因素和其他研究團隊提出改善的方法。
在第二章中,介紹本論文所參考的深紫外光發光二極體結構與模擬中所需設定之物理參數。
在第三章中,探討深紫外光發光二極體在正向極化或反向極化下,極化效應在多量子井活性區和p型層對元件特性的影響。從模擬結果可得知,極化電場嚴重影響導致p型層彎曲,造成光電特性下降,而使用電子阻礙層和p型夾層漸變之優化結構能夠有效減緩極化效應的影響,進而增加電子侷限和電洞注入效率,而此優化結構在正向極化或反向極化下都與原始結構在無極化下結構的輸出特性相當。
而在第四章中,探討深紫外光發光二極體使用特殊井障設計結構增加載子侷限能力。透過模擬結果可知,深紫外光發光二極體因為活性區的載子侷限能力不佳導致嚴重電子溢流,因此,透過使用設計結構能夠有效改善輸出效率、輻射復合速率、光電轉換效率以及降低元件對於電子阻礙層之鋁含量變化影響。
最後,本論文在第五章做一個完整的結論。
The III-nitride light-emitting diodes (LED) have been developed and applied in many applications, especially backlighting of LCD displays, automotive and street lighting. Despite these achievements, the efficiencies and power levels of AlGaN-based deep-ultraviolet (DUV) LED are still very low compared with InGaN-based LED to date. The external quantum efficiency (EQE) of AlGaN DUV LED is often restricted by lack of high-quality AlN substrates or AlGaN templates, poor light extraction efficiency (LEE) by absorption of p-GaN contact layer, tilted band caused by large polarization field, severe electron current leakage, low hole injection efficiency and so on. In order to improve the output performance of DUV LED, mitigation of the influence of polarization effect and enhancement of carrier confinement in DUV LED are numerically investigated in this thesis.
In chapter 1, the historical review and the development of solid-state lighting and other applications for the UV LED are introduced. Then, the influences of polarization effects are described. In addition, the efficiency limitations and the methods to improve the efficiency of AlGaN DUV LEDs are also reviewed.
In chapter 2, the structure of AlGaN DUV LED under study and the related physical parameters used in simulation are introduced.
In chapter 3, the influences of the polarization effects in either multi- quantum well (MQW) active region or p-type layers on the characteristics of DUV LED is explored. Simulation results show that the severe band bending of the p-type layers induced by the polarization field affects markedly the optical and electrical performance of DUV LED. A band-engineered DUV LED structure with compositional grading electron-blocking layer (EBL) and p-interlayer is proposed to enhance the electron confinement and hole injection with the mitigation of polarization effect. The device performance of the proposed LED structure with either Ga-face or N-face polarization is comparable with that of the original DUV LED without polarization.
In chapter 4, the employments of several specifically-designed quantum barriers in DUV LED to enhance carrier confinement are numerically studied. Simulation results indicate that electron current leakage is one of severe issues in DUV LED due to poor carrier confinement within active region. According to simulation analysis, the proposed structures can improve output power, radiative recombination rate, wall-plug efficiency (WPE), and are less affected by varying Al composition of EBL.
Finally, a summary to the previous studies is given in chapter 5.
致 謝 I
目 錄 II
中文摘要 IV
ABSTRACT V
圖表索引 VII
第一章 紫外光發光二極體之介紹與發展 1
1.1 前言 1
1.2 紫外光發光二極體之發展與應用 4
1.2.1 紫外光發光二極體之發展 4
1.2.2 紫外光發光二極體之應用 5
1.3 三族氮化物之極化效應 6
1.3.1 晶體結構 7
1.3.2 應力與形變 9
1.3.3 極化效應 10
1.4 提升深紫外光發光二極體之元件設計和方法 13
1.5 結論 22
參考文獻 23

第二章 模擬結構與參數設定 38
2.1 前言 38
2.2 深紫外光氮化鋁鎵發光二極體元件結構 38
2.3 物質參數設定 40
2.4 載子復合參數設定 43
2.5 結論 45
參考文獻 46

第三章 極化效應對氮化鋁鎵深紫外光發光二極體之特性影響 51
3.1 前言 51
3.2 元件結構分析方式 52
3.3模擬結果與分析 53
3.4 結論 62
參考文獻 63

第四章 探討井障與電子阻礙層對載子侷限能力之特性影響 65
4.1 前言 65
4.2 元件結構設計 67
4.3 模擬結果與分析 68
4.4 結論 76
參考文獻 77
第五章 結論 84
附錄A 論文發表清單 i
第一章 參考文獻
[1] Y. H. Cho and Y. P. Sun, “High quantum efficiency of violet-blue to green light emission in InGaN quantum well structures grown by graded-In-content profiling method,” Appl. Phys. Lett., vol. 90, pp. 011912-1–011921-3, 2007.
[2] J. Li, J. Y. Lin, and H. X. Jiang, “Growth of III-nitride photonic structures on large area silicon substrates,” Appl. Phys. Lett., vol. 88, pp. 171909-1–171909-3, 2006.
[3] Y. A. Chang, C. Y. Luo, H. C. Kuo, Y. K. Kuo, C. F. Lin, and S. C. Wang, “Simulation of InGaN quantum well laser performance using quaternary InAlGaN alloy as electronic blocking layer,” Jpn. J. Appl. Phys., vol. 44, pp. 7916–7918, 2005.
[4] C. F. Lu, C. F. Huang, Y. S. Chen, W. Y. Shiao, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Phosphor-free monolithic white-light LED,” IEEE J. Sel. Top. Quantum Electron., vol. 15, pp. 1210–1217, 2009.
[5] K. Okamoto and Y. Kawakami, “High-efficiency InGaN/GaN light emitters based on nanophotonics and plasmonics,” IEEE J. Sel. Top. Quantum Electron., vol. 15, pp. 1199–1209, 2009.
[6] R. J. Xie, N. Hirosaki, M. Mitomo, K. Takashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors,” Appl. Phys. Lett., vol. 88, pp. 101104-1–101104-3, 2006.
[7] M. R. Krame, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol., vol. 3, pp. 160–175, 2007.
[8] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science, vol. 308, pp. 1274–1278, 2005.
[9] 李正中,蘇炎坤,孫慶成,洪瑞華,陳建宇,賴芳儀,呂紹旭,吳孟奇,黃麒甄,梁從主,歐崇仁,林俊良,劉如熹,黃琬瑜,朱紹舒,郭文凱,謝其昌,“LED工程師基礎概念與應用”,五南圖書出版公司,台北,第93–100頁,2012年。
[10] H. J. Round, “A note on carborundum,” Electr. World, vol. 49, p. 309, 1907.
[11] R. Braunstein, “Radiative transitions in semiconductors,” Phys. Rev., vol. 99, pp. 1892–1893, 1955.
[12] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett., vol. 1, pp. 82–83, 1962.
[13] N. Zheludev, “The life and times of the LED-a 100-year history,” Nat. Photonics, vol. 1, pp. 189–192, 2007.
[14] S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys., vol. 32, pp. L8–L11, 1993.
[15] S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light emitting diodes,” Appl. Phys. Lett., vol. 62, pp. 2390–2392, 1993.
[16] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys., vol. 34, pp. L1332–L1335, 1995.
[17] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green, and yellow light-emitting diodes with quantum well structure,” Jpn. J. Appl. Phys., vol. 34, pp. L797–L799, 1995.
[18] M. S. Shur and R. Gaska, “Deep-ultraviolet light-emitting diodes,” IEEE Trans. Electron Devices, vol. 57, pp. 12–25, 2010.
[19] Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys., vol. 43, pp. 354002-1–354002-6, 2010.
[20] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers, Berlin, Germany: Springer-Verlag, p. 1, 1997.
[21] J. Y. Tsao, “Solid-state lighting: lamps, chips and materials for tomorrow,” IEEE Circuits Devices Mag., vol. 20, pp. 28–37, 2004.
[22] M. S. Shur and A. Zukauskas, “Solid-state lighting: Toward superior illumination,” Proc. IEEE, vol. 93, pp. 1691–1703, 2005.
[23] 李正中,蘇炎坤,孫慶成,洪瑞華,陳建宇,賴芳儀,呂紹旭,吳孟奇,黃麒甄,梁從主,歐崇仁,林俊良,劉如熹,黃琬瑜,朱紹舒,郭文凱,謝其昌,“LED工程師基礎概念與應用”,五南圖書出版公司,台北,第190–194頁,2012年。
[24] A. M. Bode and Z. Dong, “Mitogen-activated protein kinase activation in UV-induced signal transduction,” Sci STKE, vol. 167, pp. 1–15, 2003.
[25] H. Hirayama, “Growth techniques of AlN/AGaN and development of high-efficiency deep-ultraviolet light-emitting diodes,” in III-Nitride Ultraviolet Emitters, Berlin, Germany: Springer Series in Materials Science, vol. 227, pp. 76–81, 2016.
[26] Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature, vol. 441, pp. 325–328, 2006.
[27] ”UV LED Efficiency 2015 (last update 19-July-2015),” 2015, [online]. Available: www.researchgate.net/publication/280131929
[28] M. Kneissl, F. Mehke, C. Kuhn, C. Reich, M. Guttmann, J. Enslin, T. Wernicke, A. Knauer, V. Kueller, U. Zeimer, M. Lapeyrade, J. Raß, N. Lobo-Ploch, T. Kolbe, J. Glaab, S. Einfeldt, and M. Weyers, “Deep Ultraviolet LEDs: From Materials Research to Real-World Applications,” Summer Topicals Meeting Series (SUM), pp. 9–10, 2015.
[29] P. E. Hockberger, “A history of ultraviolet photobiology for humans, animals and microorganisms,” Photochem. Photobiol., vol. 76, pp. 561–579, 2002.
[30] M. Schreiner, J. Martínez-Abaigar, J. Glaab, and M. Jansen, “UVB induced secondary plant metabolites,” Optik Photonik, vol. 9, pp. 34–37, 2014.
[31] S. Vilhunen, H. Särkkä, and M. Sillanpää, “Ultraviolet light-emitting diodes in water disinfection,” Environ. Sci. Pollut. Res., vol. 16, pp. 439–442, 2009.
[32] M. H. Crawford, M. A. Banas, M. P. Ross, D. S. Ruby, J. S. Nelson, R. Boucher, and A. A. Allerman, “Ultraviolet water purification systems for rural environments and mobile applications,” Sandia Report, SAND2005-7245, 2005.
[33] M. A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based deep ultraviolet light emitting diodes—UV-LEDs—for water disinfection,” Water Res., vol. 45, pp. 1481–1489, 2011.
[34] G. Y. Lui, D. Roser, R. Corkish, N. Ashbolt, P. Jagals, and R. Stuetz, “Photovoltaic powered ultraviolet and visible light-emitting diodes for sustainable point-of-use disinfection of drinking waters,” Sci. Total Environ., vol. 493, pp. 185–196, 2014.
[35] J. Mellqvist, and A. Rosen, “DOAS for flue gas monitoring—temperature effects in the UV/visible absorption spectra of NO, NO2, SO2, and NH3,” J. Quant. Spectrosc. Radiat. Transf., vol. 56, pp. 187–208, 1996.
[36] Z. Xu, and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag., vol. 46, pp. 67–73, 2008.
[37] K.-X. Sun, B. Allard, S. Buchman, S. Williams, R. L. Byer, “LED deep UV source for charge management of gravitational reference sensors,” Class. Quantum Grav., vol. 23, pp. S141–S150, 2006.
[38] C. Wood and D. Jena, “Lateral and vertical charge transport in polar nitride heterostructures,” in Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications, New York: Springer-Verlag, pp. 113–114, 2007.
[39] I. Akasaki and H. Amano, “Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters,” Jpn. J. Appl. Phys., vol. 36, pp. 5393–5408, 1997.
[40] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys., vol. 36, pp. L382–L385, 1997.
[41] T. Takeuchi, S. Sota, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Quantum-confined Stark effect in strained GaInN quantum wells on sapphire (0001),” J. Cryst. Growth, vol. 189–190, pp. 616–620, 1998.
[42] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett., vol. 73, pp. 2006–2008, 1998.
[43] L.-H. Peng, C.-W. Chuang, and L.-H. Lou, “Piezoelectric effects in the optical properties of strained InGaN quantum wells,” Appl. Phys. Lett., vol. 74, pp. 795–797, 1999.
[44] S. P. Łepkowski, H. Teisseyre, T. Suski, P. Perlin, N. Grandjean, and J. Massies, “Piezoelectric field and its influence on the pressure behavior of the light emission from GaN/AlGaN strained quantum wells,” Appl. Phys. Lett., vol. 79, pp. 3693–3695, 2001.
[45] V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructure,” Appl. Phys. Lett., vol. 80, pp. 1204−1206, 2002.
[46] L.-H. Peng, C.-W. Shih, C.-M. Lai, C.-C. Chuo, and J.-I. Chyi, “Surface band-bending effects on the optical properties of indium gallium nitride multiple quantum wells,” Appl. Phys. Lett., vol. 82, pp. 4268−4270, 2003.
[47] J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, San Diego: Academic Press, pp. 13–48, 2003.
[48] W. S. Wang, T. D. Sands, and N. W. Cheung, “Integration of GaN Thin Films with Dissimilar Substrate Materials by Wafer Bonding and Laser Lift-off,” in III-V Nitride Semiconductors: Applications & Devices, New York: Taylor & Francis, pp. 115–116, 2003.
[49] 盧宗宏,「紫外光發光二極體最佳化結構之研究」,國立彰化師範大學光電科技研究所碩士論文,第5頁,2007年。
[50] J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures, Cambridge: Cambridge University Press, pp. 26–31, 2003.
[51] T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys., vol. 37, pp. L398–L400, 1998.
[52] S. De, D. K. Das, A. Layek, A. Raja, and M. K. Singh, “Optoelectronic behaviors and carrier dynamics of individual localized luminescent centers in InGaN quantum well light emitting diodes,” Appl. Phys. Lett., vol. 99, pp. 251911-1–251911-3, 2011.
[53] D. Jena, S. P. Alpay, and J. V. Mantese, “Functionally graded polar heterostuctures: New materials for multifunctional devices,” in Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications, New York: Springer-Verlag, pp. 307–372, 2007.
[54] R. Butté and N. Grandjean, “Effects of polarization in optoelectronic quantum structures,” in Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications, New York: Springer-Verlag, pp. 467–511, 2007.
[55] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, pp. 334–344, 2000.
[56] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett., vol. 53, pp. 2173–2176, 1984.
[57] M. Leroux, N. Grandjean, M. Laügt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells,” Phys. Rev. B, vol. 58, pp. R13371–R13374, 1998.
[58] J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, San Diego: Academic Press, pp. 213–214, 2003.
[59] Y. Kumagai, Y. Kubota, T. Nagashima, T. Kinoshita, R. Dalmau, R. Schlesser, B. Moody, J. Xie, H. Hurakami, A. Koukitu, and Z. Sitar, “Preparation of a freestanding AlN substrate from a thick AlN layer grown by hydride vapor phase epitaxy on a bulk AlN substrate prepared by physical vapor transport,” Appl. Phys. Express, vol. 5, pp. 055504-1–055504-3, 2012.
[60] H.-M. Wang, J.-P. Zhang, C.-Q. Chen, Q. Fareed, J.-W. Yang and M. A. Khan, “AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire,” Appl. Phys. Lett., vol. 81, pp. 604–606, 2002.
[61] J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang and M. A. Khan, “Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm,” Appl. Phys. Lett., vol. 81, pp. 4910–4912, 2002.
[62] S. A. Nikishin, V. V. Kuryatkov, A. Chandolu, B. A. Borisov, G. D. Kipshidze, I. Ahmad, M. Holtz, and H. Temkin, “Deep Ultraviolet Light Emitting Diodes Based on Short Period Superlattices of AlN/AlGa(In)N,” Jpn. J. Appl. Phys., vol. 42, pp. L1362–L1365, 2003.
[63] A. Yasan, R. McClintock, K. Mayers, D. Shiell, L. Gautero, S. R. Darvish, P. Kung, and M. Razeghi, “4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes,” Appl. Phys. Lett., vol. 83, pp. 4701–4703, 2003.
[64] V. Adivarahan, S. Wu, J. P. Zhang, A. Chitnis, M. Shatalov, V. Mandavilli, R. Gaska, and M. A. Khan, “High-efficiency 269 nm emission deep ultraviolet light-emitting diodes,” Appl. Phys. Lett., vol. 84, pp. 4762–4764, 2004.
[65] W. H. Sun, J. P. Zhang, V. Adivarahan, A. Chitnis, M. Shatalov, S. Wu, V. Mandavilli, J. W. Yang and M. A. Khan, “AlGaN-based 280 nm light-emitting diodes with continuous wave powers in excess of 1.5 mW,” Appl. Phys. Lett., vol. 85, pp. 531–533, 2004.
[66] W. Sun, V. Adivarahan, M. Shatalov, Y. Lee, S. Wu, J. Yang, J. Zhang, and M. A. Khan, “Continuous Wave Milliwatt Power AlGaN Light Emitting Diodes at 280 nm,” Jpn. J. Appl. Phys., vol. 43, pp. L1419–L1421, 2004.
[67] H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, “231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire,” Appl. Phys. Lett., vol. 91, pp. 071901-1– 071901-3, 2007.
[68] H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire”, Phys. Status Solidi A, vol. 206, pp.1176–1182, 2009.
[69] R. Jain, W. Sun, J. Yang, M. Shatalov, X. Hu, A. Sattu, A. Lunev, J. Deng, I. Shturm, Y. Bilenko, R. Gaska, and M. S. Shur, “Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes,” Appl. Phys. Lett., vol. 93, pp. 051113-1–051113-3, 2008.
[70] P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett., vol. 102, pp. 241113-1–241113-4, 2013.
[71] P. Dong, J. Yan, Y. Zhang, J. Wang, J. Zeng, C. Geng, P. Cong, L. Sun, T. Wei, L. Zhao, Q. Yan, C. He, Z. Qin, and J. Li, “AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significan improvement ininternal quantume fficiency,” J. Cryst. Growth, vol. 395, pp. 9–13, 2014.
[72] J. Yan, J. Wang, Y. Zhang, P. Cong, L. Sun, Y. Tian, C. Zhao, and J. Li, “AlGaN-based deep-ultraviolet light-emitting diodes grown on High-quality AlN template using MOVPE,” J. Cryst. Growth, vol. 414, pp. 254–257, 2015.
[73] K. B. Nam, J. Li, M. L. Nakami, J. Y. Lin, and H. X. Jiang, “Unique optical properties of AlGaN alloys and related ultraviolet emitters,” Appl. Phys. Lett., vol. 84, pp. 5264–5266, 2004.
[74] T. Kolbe, A. Knauer, C. Chua, Z. Yang, S. Einfeldt, P. Vogt, N. M. Johnson, M. Weyers, and M. Kneissl, “Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes,” Appl. Phys. Lett., vol. 97, pp. 171105-1–171105-3, 2010.
[75] H.-Y. Ryu, I.-G. Choi, H.-S. Choi, and J.-I. Shim, “Investigation of Light Extraction Efficiency in AlGaN Deep-Ultraviolet Light-Emitting Diodes,” Appl. Phys. Express, vol. 6, pp. 062101-1–062101-4, 2013.
[76] Y. Guo, Y. Zhang, J. Yan, X. Chen, S. Zhang, J. Wang, and J. Li, “Enhancement of light extraction on AlGaN-based deep-ultraviolet light-emitting diodes using a sidewall reflection method,” Wide Bandgap Semiconductors China (SSLChina: IFWS), 2016 13th China International Forum on Solid State Lighting: International Forum on, pp. 127–130, 2016.
[77] K. Takehara, K. Takeda, S. Ito, H. Aoshima, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Indium–Tin Oxide/Al Reflective Electrodes for Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys., vol. 51, pp. 042101-1–042101-4, 2012.
[78] N. Maeda, and H. Hirayama, “Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer,” Phys. Status Solidi C, vol. 10, pp. 1521–1524, 2013.
[79] T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express, vol. 10, pp. 031002-1–031002-4, 2017.
[80] Y.-T. Moon, D.-J. Kim, J.-S. Park, J.-T. Oh, J.-M. Lee, Y.-W. Ok, H. Kim, and S.-J. Park, “Temperature dependence of photoluminescence of InGaN films containing In-rich quantum dots,” Appl. Phys. Lett., vol. 79, pp. 599–601, 2001.
[81] H. K. Cho, J. Y. Lee, N. Sharma, C. J. Humphreys, G. M. Yang, C. S. Kim, J. H. Song, and P. W. Yu, “Effect of growth interruptions on the light emission and indium clustering of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., vol. 79, pp. 2594–2596, 2001.
[82] M. Takeguchi, M. R. McCartney, and D. J. Smith, “Mapping In concentration, strain, and internal electric field in InGaN/GaN quantum well structure,” Appl. Phys. Lett., vol. 84, pp. 2103–2105, 2004.
[83] M. A. Khan, V. Adivarahan, J. P. Zhang, C. Chen, E. Kuokstis, A. Chitnis, M. Shatalov, J. W. Yang, and G. Simin, “Stripe geometry ultraviolet light emitting diodes at 305 nanometers using quaternary AlInGaN multiple quantum wells,” Jpn. J. Appl. Phys., vol. 40, pp. L1308–L1310, 2001.
[84] V. Adivarahan, A. Chitnis, J. P. Zhang, M. Shatalov, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, and M. S. Shur, “Ultraviolet light-emitting diodes at 340 nm using quaternary AlInGaN multiple quantum wells,” Appl. Phys. Lett., vol. 79, pp. 4240–4242, 2001.
[85] H. Hirayama, A. Kinoshita, T. Yamabi, Y. Enomoto, A. Hirata, T. Araki, Y. Nanishi, and Y. Aoyagi, “Marked enhancement of 320–360 nm ultraviolet emission in quaternary InxAlyGa1–x–yN with In-segregation effect,” Appl. Phys. Lett., vol. 80, pp. 207–209, 2002.
[86] H. Hirayama, Y. Enomoto, A. Kinoshita, A. Hirata, and Y. Aoyagi, “Room-temperature intense 320 nm band ultraviolet emission from quaternary InAlGaN-based multiple-quantum wells,” Appl. Phys. Lett., vol. 80, pp. 1589–1591, 2002.
[87] M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. A. Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, pp. 302– 309, 2002.
[88] M. Miyoshi, M. Kato, and T. Egawa, “Experimental and simulation study on ultraviolet light emission from quaternary InAlGaN quantum wells with localized carriers,” Semicond. Sci. Technol., vol. 29, pp. 075024-1–075024-6, 2014.
[89] J. Brault, B. Damilano, A. Kahouli, S. Chenot, M. Leroux, B. Vinter, and J. Massies, “Ultra-violet GaN/Al0.5Ga0.5N quantum dot based light emitting diodes,” J. Cryst. Growth, vol. 363, pp. 282–286, 2013.
[90] J. Vema, S. M. Islam, V. Protasenko, P. K. Kandaswamy, H. Xing, and D. Jena, “Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures,” Appl. Phys. Lett., vol. 104, pp. 021105-1–021105-5, 2014.
[91] J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science, vol. 327, pp. 60–64, 2010.
[92] L. Zhang, K. Ding, J. C. Yan, J. X. Wang, Y. P. Zeng, T. B. Wei, Y. Y. Li, B. J. Sun, R. F. Duan, and J. M. Li, “Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure,” Appl. Phys. Lett., vol. 97, pp. 062103-1–062103-3, 2010.
[93] J. Chang, D. Chen, J. Xue, K. Dong, B. Liu, H. Lu, R. Zhang, and Y. Zheng, “AlGaN-based multiple quantum well deep ultraviolet light-emitting diodes with polarization doping,” IEEE Photonics J., vol. 8, pp. 1600207-1–1600207-7, 2016.
[94] W. Hu, P. Qin, W. Song, C. Zhang, R. Wang, L. Zhao, C. Xia, S. Yuan, Y. Yin, and S. Li, “Ultraviolet light-emitting diodes with polarization-doped p-type layer,” Superlattices Microstruct., vol. 97, pp. 353–357, 2016.
[95] P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mishra, A. W. Saxler, R. Perrin, and W. C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices,” Appl. Phys. Lett., vol. 75, pp. 2444–2446, 1999.
[96] K. Kumakura, and N. Kobayashi, “Increased Electrical Activity of Mg-Acceptors in AlxGa1–xN/GaN Superlattices,” Jpn. J. Appl. Phys., vol. 38, pp. L1012–L1014, 1999.
[97] X. Wang, W. Wang, J. Wang, H. Wu, and C. Liu, “Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice,” Sci Rep, vol. 7, pp. 44223-1–44223-6, 2017.
[98] M. W. Shin, and S. H. Jang, “Thermal analysis of high power LED packages under the alternating current operation,” Solid-State Electron., vol. 68, pp. 48–50, 2012.
[99] N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, “Solid-state lighting: failure analysis of white LEDs,” J. Cryst. Growth, vol. 268, pp. 449–456, 2004.

第二章 參考文獻
[1] APSYS by Crosslight Software, Inc., Burnaby, Canada, (2015) [online]. Available: http://www.crosslight.com
[2] J. Yan, J. Wang, Y. Zhang, P. Cong, L. Sun, Y. Tian, C. Zhao, and J. Li, “AlGaN-based deep-ultraviolet light-emitting diodes grown on High-quality AlN template using MOVPE,” J. Cryst. Growth, vol. 414, pp. 254–257, 2015.
[3] N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Temperature and compositional dependence of the energy band gap of AlGaN alloys,” Appl. Phys. Lett., vol. 87, pp. 242104-1–242104-3, 2005.
[4] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, pp. 5815–5875, 2001.
[5] S. R. Lee, A. F. Wright, M. H. Crawford, G. A. Petersen, J. Han, and R. M. Biefeld, “The band-gap bowing of AlxGa1–xN alloys,” Appl. Phys. Lett., vol. 74, pp. 3344–3346, 1999.
[6] D. R. Hang, C. H. Chen, Y. F. Chen, H. X. Jiang and J. Y. Lin, “AlxGa1–xN/GaN band offsets determined by deep-level emission,” J. Appl. Phys., vol. 90, pp. 1887–1890, 2001.
[7] R. A. Hogg, C. E. Norman, A. J. Shields, M. Pepper, and N. Iizuka, “Comparison of spontaneous and piezoelectric polarization in GaN/Al0.65Ga0.35N multi-quantum-well structures,” Appl. Phys. Lett., vol. 76, pp. 1428−1430, 2000.
[8] L. Jia, E. T. Yu, D. Keogh, P. M. Asbeck, P. Miraglia, A. Roskowski, and R. F. Davis, “Polarization charges and polarization-induced barriers in AlxGa1–xN/GaN and InyGa1–yN/GaN heterostructures,” Appl. Phys. Lett., vol. 79, pp. 2916−2918, 2001.
[9] F. D. Sala, A. D. Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J.-M. Jancu, “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett., vol. 74, pp. 2002−2004, 1999.
[10] F. Renner, P. Kiesel, G. H. Döhler, M. Kneissl, C. G. Van de Walle, and N. M. Johnson, “Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy,” Appl. Phys. Lett., vol. 81, pp. 490–492, 2002.
[11] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in strained quantum wells,” Jpn. J. Appl. Phys., vol. 36, pp. L382–L385, 1997.
[12] H. Zhang, E. J. Miller, E. T. Yu, C. Poblenz, and J. S. Speck, “Measurement of polarization charge and conduction-band offset at InxGa1–xN/GaN heterojunction interfaces,” Appl. Phys. Lett., vol. 84, pp. 4644–4646, 2004.
[13] J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys., vol. 106, pp. 011101-1–011101-28, 2009.
[14] I. Vurgaftman and J. R. Meyer, “Electron bandstructure parameters,” in Nitride Semiconductor Devices: Principles and Simulation, J. Piprek, Ed., Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, p. 24, 2007.
[15] E. F. Schubert, Light-Emitting Diodes, New York: Cambridge University Press, pp. 35–40, 2003.
[16] M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, “A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes,” J. Appl. Phys., vol. 106, pp. 114508-1–114508-4, 2009.
[17] A. Reale, G. Massari, A. D. Carlo, P. Lugli, A. Vinattieri, D. Alderighi, M. Colocci, F. Semond, N. Grandjean, and J. Massies, “Comprehensive description of the dynamical screening of the internal electric fields of AlGaN/GaN quantum wells in time-resolved photoluminescence experiments,” J. Appl. Phys., vol. 93, pp. 400–409, 2003.
[18] A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett., vol. 96, pp. 103504-1–103504-3, 2010.
[19] H. Y. Ryu, K. H. Ha, J. H. Chae, K. S. Kim, J. K. Son, O. H. Nam, Y. J. Park, and J. I. Shim, “Evaluation of radiative efficiency in InGaN blue-violet laser-diode structures using electroluminescence characteristics,” Appl. Phys. Lett., vol. 89, pp. 171106-1–171106-3, 2006.
[20] J. Piprek, C. Moe, S. Keller, S. Nakamura, and S. P. DenBaars, “Internal efficiency analysis of 280 nm light emitting diodes,” Proc. SPIE, vol. 5594, pp. 177–184, 2004.
[21] H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett., vol. 96, pp. 211122-1–211122-3, 2010.
[22] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett., vol. 91, pp. 141101-1–141101-3, 2007.
[23] K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett., vol. 94, pp. 191109-1–191109-3, 2009.
[24] M. Shatalov, A. Chitnis, A. Koudymov, J. Zhang, V. Adivarahan, G. Simin, and M. A. Khan, “Differential carrier lifetime in AlGaN based multiple quantum well deep UV light emitting diodes at 325 nm,” Jpn. J. Appl. Phys., vol. 41, pp. L1146–L1148, 2002.
[25] Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, M.-H. Kim, and Y. Park, “Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes,” Appl. Phys. Lett., vol. 97, pp. 133507-1–133507-3, 2010.
[26] N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett., vol. 91, pp. 243506-1–243506-3, 2007.
[27] E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. V. d. Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett., vol. 98, pp. 161107-1–161107-3, 2011.
[28] S. Nakamura, “Characteristics of room temperature-CW operated InGaN multi-quantum-well-structure laser diodes,” MRS Internet J. Nitride Semicond. Res., vol. 2, pp. 1–5, 1998.
[29] K. Domen, R. Soejima, A. Kuramata, K. Horino, S. Kubota, and T. Tanahashi, “Interwell inhomogeneity of carrier injection in InGaN/GaN/AlGaN multiquantum well lasers,” Appl. Phys. Lett., vol. 73, pp. 2775–2777, 1998.
[30] Y. Kimura, A. Ito, M. Miyachi, H. Takahashi, A. Watanabe, H. Ota, N. Ito, T. Tanabe, M. Sonobe, and K. Chikuma, “Optical gain and optical internal loss of GaN-based laser diodes measured by variable stripe length method with laser processing,” Jpn. J. Appl. Phys., vol. 40, pp. L1103–L1106, 2001.
[31] M. Kuramoto, C. Sasaoka, N. Futagawa, M. Nido, and A. A. Yamaguchi, “Reduction of internal loss and threshold current in a laser diode with a ridge by selective re-growth (RiS-LD),” Phys. Stat. Sol. (a), vol. 192, pp. 329−334, 2002.
[32] S. Uchida, M. Takeya, S. Ikeda, T. Mizuno, T. Fujimoto, O. Matsumoto, S. Goto, T. Tojyo, and M. Ikeda, “Recent progress in high-power blue-violet lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 9, pp. 1252–1259, 2003.
[33] K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, and U. T. Schwarz, “Gain suppression phenomena observed in InxGa1−xN quantum well laser diodes emitting at 470 nm,” Appl. Phys. Lett., vol. 89, pp. 241127-1–241127-3, 2006.

第三章 參考文獻
[1] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, pp. R10024–R10026, 1997.
[2] V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures,” Appl. Phys. Lett., vol. 80, pp. 1204–1206, 2002.
[3] S.-H. Yen, Y.-K. Kuo, M.-L. Tsai, and T.-C. Hsu, “Investigation of violet InGaN laser diodes with normal and reversed polarizations,” Appl. Phys. Lett., vol. 91, pp. 201118-1–201118-3, 2007.
[4] M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, pp. 183507-1–183507-3, 2007.
[5] Y.-K. Kuo, J.-Y. Chang, M.-C. Tsai, and S.-H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett., vol. 95, pp. 011116-1–011116-3, 2009.
[6] Y.-K. Kuo, J.-Y. Chang, M.-C. Tsai, and S.-H. Yen, “Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer,” Opt. Lett., vol. 35, pp. 3285–3287, 2010.
[7] G. F. Brown, J. W. Ager, III, W. Walukiewicz, and J. Wu, “Finite element simulations of compositionally graded InGaN solar cells,” Solar Energy Mater. Solar Cells, vol. 94, pp. 478–483, 2010.
[8] Y.-K. Kuo, J.-Y. Chang, and Y.-H. Shih, “Numerical study of the effects of hetero-interfaces, polarization charges, and step-graded interlayers on the photovoltaic properties of (0001) face GaN/InGaN p-i-n solar cell,” IEEE J. Quantum Electron., vol. 48, pp. 367–374, 2012.

第四章 參考文獻
[1] H. Tsuzuki, F. Mori, K. Takeda, T. Ichikawa, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Yoshida, M. Kuwabara, Y. Yamashita, and H. Kan, “High-performance UV emitter grown on high-crystalline-quality AlGaN underlying layer,” Phys. Status Solidi (a), vol. 206, pp. 1199–1204, 2009.
[2] J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khana, “Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm,” Appl. Phys. Lett., vol. 81, pp. 4910–4912, 2002.
[3] V. Adivarahan, S. Wu, J. P. Zhang, R. A. Chitnis, M. Shatalov, V. Mandavilli, R. Gaska, and M. A. Khan, “High-efficiency 269 nm emission deep ultraviolet light-emitting diodes,” Appl. Phys. Lett., vol. 84, pp. 4762–4764, 2004.
[4] J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “AlGaN deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys., vol. 44, pp. 7250–7253, 2005.
[5] H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, “231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire,” Appl. Phys. Lett., vol. 91, pp. 071901-1–071901-3, 2007.
[6] S. Sumiya, Y. Zhu, J. Zhang, K. Kosaka, M. Miyoshi, T. Shibata, M. Tanaka, and T. Egawa, “AlGaN-Based deep ultraviolet light-emitting diodes grown on epitaxial AlN/sapphire templates,” Jpn. J. Appl. Phys., vol. 47, pp. 43–46, 2008.
[7] H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire,” Phys. Status Solidi (a), vol. 206, pp. 1176–1182, 2009.
[8] H. Hirayama, Y. Tsukada, T. Maeda, and N. Kamata, “Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-Emitting diodes by using a multiquantum-barrier electron blocking layer,” Appl. Phys. Express, vol. 3, pp. 031002-1–031002-3, 2010.
[9] A. Fujioka, T. Misaki, T. Murayama, Y. Narukawa, and T. Mukai, “Improvement in output power of 280-nm deep ultraviolet light-emitting diode by using AlGaN multi quantum wells,” Appl. Phys. Express, vol. 3, pp. 041001-1–041001-3, 2010.
[10] C. Pernot, M. Kim, S. Fukahori, T. Inazu, T. Fujita, Y. Nagasawa, A. Hirano, M.Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes,” Appl. Phys. Express, vol. 3, pp. 061004-1–061004-3, 2010.
[11] J. R. Grandusky, S. R. Gibb, M. C. Mendrick, C. Moe, M. Wraback, and L. J. Schowalter, “High output power from 260 nm pseudomorphic ultraviolet light-emitting diodes with improved thermal performance,” Appl. Phys. Express, vol. 4, pp. 082101-1–082101-3, 2011.
[12] M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride based deep UV light emitting diode technology,” Semicond. Sci. Technol., vol. 26, pp. 014036-1–014036-6, 2011.
[13] M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, and J. Yang, “AlGaN Deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express, vol. 5, pp. 082101-1–082101-3, 2012.
[14] T. Kinoshita, T. Obata, T. Nagashima, H. Yanagi, B. Moody, S. Mita, S. Inoue, Y. Kumagai, A. Koukitu, and Z. Sitar, “Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy,” Appl. Phys. Express, vol. 6, pp. 092103-1–092103-3, 2013.
[15] J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M. Wraback, and L. J. Schowalter, “270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power,” Appl. Phys. Express, vol. 6, pp. 032101-1–032101-3, 2013.
[16] T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett., vol. 103, pp. 031109-1–031109-4, 2013.
[17] P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett., vol. 102, pp. 241113-1–241113-4, 2013.
[18] A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, and T. Mukai, “High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics,” Semicond. Sci. Technol., vol. 29, pp. 084005-1–084005-5, 2014.
[19] F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, T. Wernicke, J. Rass, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett., vol. 105, pp. 051113-1–051113-4, 2014.
[20] H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys., vol. 53, pp. 100209-1–100209-10, 2014.
[21] T. Nishida, H. Saito, and N. Kobayashi, “Millwatt operation of AlGaN-based single quantum well light-emitting diode in the ultraviolet region,” Appl. Phys. Lett., vol. 78, pp. 3927–3928, 2001.
[22] R. J. Airey, K. B. Lee, P. J. Parbrook, J. Bai, F. Ranalli, T. Wang, and G. Hill, “Temperature dependent behaviour of 340nm light emitting diodes incorporating a gallium nitride interlayer,” J. Phys. D-Appl. Phys., vol. 41, pp. 094004-1–094004-4, 2008.
[23] S. Fujikawa and H. Hirayama1, “284–300nm quaternary InAlGaN-based deep-ultraviolet light-emitting diodes on Si (111) substrates,” Appl. Phys. Express, vol. 4, pp. 061002-1–061002-3, 2011.
[24] H. Hirayama, N. Noguchi, T. Yatabe, and N. Kamata, “227nm AlGaN light-emitting diode with 0.15 mW output power realized using a thin quantum well and AlN buffer with reduced threading dislocation density,” Appl. Phys. Express, vol. 1, pp. 061002-1–061002-3, 2008.
[25] Y. A. Yin, N. Wang, S. Li, Y. Zhang, and G. Fan, “Advantages of deep-UV AlGaN light-emitting diodes with an AlGaN/AlGaN superlattices electron blocking layer,” Appl. Phys. A, vol. 119, pp. 41–44, 2015.
[26] P. Sun, X. Bao, S. Liu, C. Ye, Z. Yuan, Y. Wu, S. Li, and J. Kang, “Advantages of AlGaN-based deep ultraviolet light-emitting diodes with a superlattice electron blocking layer,” Superlattices Microstruct., vol. 85, pp. 59–66, 2015.
[27] Y. Li, S. Chen, W. Tian, Z. Wu, Y. Fang, J. Dai, and C. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J., vol. 5, pp. 8200309-1–8200309-9, 2013.
[28] G. Yang, J. Chang, J. Wang, Q. Zhang, F. Xie, J. Xue, D Yan, F. Wang, P. Chen, R. Zhang, and Y. Zheng, “Performance enhancement of AlGaN-based ultraviolet light-emitting diodes by tailoring polarization in electron blocking layer,” Superlattices Microstruct., vol. 83, pp. 1–8, 2015.
[29] X. Fan, H. Sun, X. Li, H. Sun, C. Zhang, Z. Zhang, and Z. Guo, “Efficiency improvements in AlGaN-based deep ultraviolet light-emitting diodes using inverted-V-shaped graded Al composition electron blocking layer,” Superlattices Microstruct., vol. 88, pp. 467–473, 2015.
[30] Y. Zhang, L. Yu, K. Li, H. Pi, J. Diao, X. Wang, Y. Shen, C. Zhang, W. Hu, W. Song and S. Li, “The improvement of deep-ultraviolet light-emitting diodes with gradually decreasing Al content in AlGaN electron blocking layers,” Superlattices Microstruct., vol. 82, pp. 151–157, 2015.
[31] Y.-R. Lin, B.-T. Liou, J.-Y. Chang, and Y.-K. Kuo, “Polarization engineering in III-nitride based ultraviolet light-emitting diodes,” SPIE Proc., vol. 8619, pp. 86191V-1–86191V-6, 2013.
[32] J. Han, K. E. Waldrip, S. R. Lee, J. J. Figiel, S. J. Heame, G. A. Petersen, and S. M. Myers, “Control and elimination of cracking of AlGaN using low-temperature AlGaN interlayers,” Appl. Phys. Lett., vol. 78, pp. 67–69, 2001.
[33] J. M. Bethoux, P. Vennéguès, F. Natali, E. Feltin, O. Tottereau, G. Nataf, P. D. Mierry, and F. Semond, “Growth of high quality crack-free AlGaN films on GaN templates using plastic relaxation through buried cracks,” J. Appl. Phys., vol. 94, pp. 6499–6506, 2003.
[34] Y. A. Yin, N. Wang, G. Fan, and Y. Zhang, “Investigation of AlGaN-based deep-ultraviolet light-emitting diodes with composition-varying AlGaN multilayer barriers,” Superlattices Microstruct., vol. 76, pp. 149–155, 2014.
[35] X. Bao, P. Sun, S. Liu, C. Ye, S. Li, and J. Kang, “Performance improvements for AlGaN-based deep ultraviolet light-emitting diodes with the p-type and thickened last quantum barrier,” IEEE Photonics J., vol. 7, pp. 1400110-1–1400110-10, 2015.
[36] J.-Z. Liu, C.-H. Lin, K.-Y. Lee, Y.-L. Wang, C.-L. Liao, Y.-F. Chang, C.-L. Ho, and M.-C. Wu, “Performance enhancement of ultraviolet light-emitting diodes by incorporating a thin Al(In)GaN interlayer in multiquantum-well region,” IEEE J. Quantum Electron., vol. 51, pp. 3300306-1–3300306-6, 2015.
[37] S. J. Kim and T. G. Kim, “Deep-ultraviolet AlGaN light-emitting diodes with variable quantum well and barrier widths,” Phys. Status Solidi (a), vol. 211, pp. 656–660, 2014.
[38] S. Chen, Y. Li, W. Tian, M. Zhang, S. Li, Z. Wu, Y. Fang, J. Dai, and C. Chen, “Numerical analysis on the effects of multi-quantum last barriers in AlGaN-based ultraviolet light-emitting diodes,” Appl. Phys. A, vol. 118, pp. 1357–1363, 2015.
[39] Y. Shen, Y. Zhang, L. Yu, K. Li, H. Pi, J. Diao, W. Hu, W. Song, C. Zhang, and S. Li, “The advantages of AlGaN-based ultraviolet light-emitting diodes with Al content graded AlGaN barriers,” J. Disp. Technol., vol. 11, pp. 677–681, 2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔