王明妤 (2015)。監測技術融合的專利指標與融合趨勢:以纖維酒精為例。臺北市:科技部。
王明妤、許旭昇 (2005)。專利組合分析方法之建構:以磁阻性隨機存取記憶體為例。科技管理學刊,10(3),97-120。古森本 (2008)。生質能源作物之開發與潛力。農業生技產業季刊,(13),46-53。左峻德 (2007)。我國發展生質能源產業之可行性。農業生技產業季刊,(9),56-61。行政院 (2009)。再生能源發展條例。行政院,臺北市,臺灣。
阮明淑、梁峻齊 (2009)。專利指標發展研究。圖書館學與資訊科學,35(2),88-106。邱太銘 (2012)。生質酒精技術發展現況與展望。臺灣經濟研究月刊,35(12),42-51。吳耿東、李宏台 (2007)。全球生質能源應用現況與未來展望。林業研究專訊,14(3),5-9。林祐生、李文乾 (2009)。生質酒精。行政院國家科學委員會,科學發展,(433),20-25。
周歆凱、張怡秋、黃興進、蔡明足、翁林仲、蘇喜(2007)。運用“購物籃分析技術”探討滯留急診超過24小時病患特性。醫務管理期刊,8(3),216-231。洪永杰、許博爾 (2005)。纖維素轉換生質酒精技術專利檢索與分析報告。元智大學機械系最佳化設計實驗室,桃園,臺灣。
陳垂呈 (2011)。以減少產生重複候選項目組提昇探勘關聯規則之效能。工程科技與教育學刊,8(1),90-95。陳達仁、黃慕萱 (2009)。專利資訊檢索分析與策略。臺北市,華泰文化。
陳亮、張志強、尚瑋姣 (2013)。技術融合研究進展分析。情報雜誌,32(10),99-105。
陳文恆、郭家倫、黃文松、王嘉寶 (2007)。纖維酒精技術之發展。農業生技產業季刊,(9),62-69。翁順裕、賴奎魁、陳孟祺 (2008)。將專利組合鑲嵌至技術規劃中。管理與系統,15(2),323-354。許嘉伊 (2010)。全球生物農藥產業概況與未來展望。農業生技產業季刊,24,1-7。國發會 (2007)。我國生質酒精發展策略。取自http://www.ndc.gov.tw/m1.aspx?sNo=
0009419
莊閔傑、王亞男、柯淳涵 (2012)。生物化學法轉換木質纖維製備生質酒精技術之回顧。臺灣大學生物資源暨農學院實驗林研究報告,26(1),77-92。
葉英敏 (1986)。日本技術引進及技術進步之研究。中華經濟研究院,臺北市,臺灣。
經濟部 (2009)。綠色能源產業旭升方案。
廖春梅 (2010)。生質酒精之經濟效益分析。臺灣銀行季刊,61(2),163-190。蘇美惠 (2013)。生質酒精產業動態與我國發展潛力。教育部生質能源產業於氣候變遷調適人才培育座談會,臺北市,臺灣。
Adner, R., & Levinthal, D. A. (2000). Technology speciation and the path of emerging technologies. Wharton on managing emerging technologies, 5574.
Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB (Vol. 1215, pp. 487-499).
Agrawal, R., Imieliński, T., & Swami, A. (1993, June). Mining association rules between sets of items in large databases. In ACM SIGMOD Record (Vol. 22, No. 2, pp. 207-216). ACM.
Berry, M. J., & Linoff, G. S. (2004). Data mining techniques: for marketing, sales, and customer relationship management. John Wiley and Sons.
Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and sustainable energy reviews, 14(2), 557-577.
Brockhoff, K. K. (1992). Instruments for patent data analyses in business firms. Technovation, 12(1), 41-59.
Campbell, R. S. (1983). Patent trends as a technological forecasting tool. World Patent Information, 5(3), 137-143.
Chang, Y. C., & Yen, H. R. (2012). Introduction to the special cluster on managing technology–service fusion innovation. Technovation, 32(7), 415-418.
Chen, M., Zhao, J., & Xia, L. (2008). Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydrate Polymers, 71(3), 411-415.
Curran, C. S., & Leker, J. (2011). Patent indicators for monitoring convergence–examples from NFF and ICT. Technological Forecasting and Social Change, 78(2), 256-273.
Department of Energy, U. S. (2014). U.S. Department of Energy Bioenergy Research Centers, DOE/SC-0162 Retrieved 31 July, 2014, from http://genomicscience.
energy.gov/centers/brcbrochure/
Ernst, H. (1995). Patenting strategies in the German mechanical engineering industry and their relationship to company performance. Technovation, 15(4), 225-240.
Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small Business Economics, 9(4), 361-381.
Ernst, H. (1998). Patent portfolios for strategic R&D planning. Journal of Engineering and Technology Management, 15(4), 279-308.
Fabry, B., Ernst, H., Langholz, J., & Köster, M. (2006). Patent portfolio analysis as a useful tool for identifying R&D and business opportunities—an empirical application in the nutrition and health industry. World Patent Information, 28(3), 215-225.
Freddi, D. (2009). The integration of old and new technological paradigms in low-and medium-tech sectors: the case of mechatronics. Research Policy, 38(3), 548-558.
Hacklin, F. (2008). Fundamentals of convergence and innovation. Management of Convergence in Innovation: Strategies and Capabilities for Value Creation Beyond Blurring Industry Boundaries, 25-49.
Hall, D. O. (1997). Biomass energy in industrialized countries: A view of the future. Forest ecology and management, 91(1), 17-45.
Holme, M. (2014, March). Using the “Y” Class to find “green” patents. Retrieved November 15, 2014, from http://www.holmepatent.dk/en/
Hu, M. C. (2012). Technological innovation capabilities in the thin film transistor-liquid crystal display industries of Japan, Korea, and Taiwan. Research Policy, 41(3), 541-555.
Islam, N., & Miyazaki, K. (2009). Nanotechnology innovation system: Understanding hidden dynamics of nanoscience fusion trajectories. Technological Forecasting and Social Change, 76(1), 128-140.
Jin, J. H., Park, S. C., & Pyon, C. U. (2011). Finding research trend of convergence technology based on Korean R&D network. Expert Systems with Applications, 38(12), 15159-15171.
Karvonen, M., & Kässi, T. (2013). Patent citations as a tool for analysing the early stages of convergence. Technological Forecasting and Social Change, 80(6), 1094-1107.
Kim, E., Kim, J., & Koh, J. (2014). Convergence in information and communication technology (ICT) using patent analysis. JISTEM-Journal of Information Systems and Technology Management, 11(1), 53-64.
Ko, N., Yoon, J., & Seo, W. (2014). Analyzing interdisciplinarity of technology fusion using knowledge flows of patents. Expert Systems with Applications, 41(4), 1955-1963.
Kodama, F. (1986). Technological diversification of Japanese industry. Science, 233(4761), 291-296.
Kodama, F. (1991). Analyzing Japanese high technologies: The techno-paradigm shift. Cengage Learning.
Kodama, F. (1992a). Technology fusion and the new Research-and-Development. Harvard Business Review, 70(4), 70-78.
Kodama, F. (1992b). Japan’s unique capacity to innovate: Technology fusion and its international implications. Japan's Growing Technological Capability: Implications for the US Economy, 147-164.
Kodama, F. (2014). MOT in transition: From technology fusion to technology-service convergence. Technovation, 34(9), 505-512.
Kurosawa, H., Nomura, N., & Tanaka, H. (1989). Ethanol production from starch by a coimmobilized mixed culture system of Aspergillus awamori and Saccharomyces cerevisiae. Biotechnology and bioengineering, 33(6), 716-723.
Lee, K. R. (2007). Patterns and processes of contemporary technology fusion: the case of intelligent robots. Asian Journal of Technology Innovation, 15(2), 45-65.
Lei, D. T. (2000). Industry evolution and competence development: the imperatives of technological convergence. International Journal of Technology Management, 19(7-8), 699-738.
Martino, J. P. (2003). A review of selected recent advances in technological forecasting. Technological Forecasting and Social Change, 70(8), 719-733.
Narin, F., Noma, E., & Perry, R. (1987). Patents as indicators of corporate technological strength. Research policy, 16(2), 143-155.
No, H. J., & Park, Y. (2010). Trajectory patterns of technology fusion: Trend analysis and taxonomical grouping in nanobiotechnology. Technological Forecasting and Social Change, 77(1), 63-75.
National Renewable Energy Laboratory (2014). What Is a Biorefinery? Retrieved November 15, 2014, from http://www.nrel.gov/biomass/biorefinery.html
Organization for Economic Co-operation and Development (1994). The Measurement of Scientific and Technological Activities: Proposed Standard Practice for Surveys of Research and Experimental Development: Frascati Manual 1993. OECD.
Pavitt, K. (1982). R&D, patenting and innovative activities: a statistical exploration. Research Policy, 11(1), 33-51.
Pavitt, K. (1985). Patent statistics as indicators of innovative activities: possibilities and problems. Scientometrics, 7(1-2), 77-99.
Phillips, F. (2001). Market-oriented technology management: innovating for profit in entrepreneurial times. Springer Science and Business Media.
Protogerou, A., Caloghirou, Y., & Siokas, E. (2010, June). Technology fusion through EU-funded research collaborative networks. Paper presented at the Summer Conference, Opening Up Innovation: Strategy, Organization and Technology, Imperial College London Business School, London, UK.
Rao, B., Angelov, B., & Nov, O. (2006). Fusion of disruptive technologies: Lessons from the skype case. European Management Journal, 24(2), 174-188.
Rosenberg, N. (1963). Technological change in the machine tool industry, 1840–1910. The Journal of Economic History, 23(4), 414-443.
Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology, 83(1), 1-11.
Suzuki, K., Sakata, J., & Hosoya, J. (2008, November). An empirical analysis on progress of technology fusion. In Digital Information Management, 2008. ICDIM 2008. Third International Conference on(pp. 937-939). IEEE.
Tan, P. N., Michael, S., & Kumar, V. (2005). Chapter 6. association analysis: Basic concepts and algorithms. Introduction to Data Mining. Addison-Wesley. ISBN, 321321367.
United States Patent and Trademark Office (2005). Four-determination of a class for original classification or assignment for examination. Retrieved Nov 26, 2008, from http://www.uspto.gov/web/offices/pac/dapp/sir/co/examhbk/four.htm
vanLooy, B., Vereyen, C., & Schmoch, U. (2014). Patent Statistics: Concordance IPC V8–NACE Rev. 2.
Wang, M. Y. (2012). Exploring potential R&D collaborators with complementary technologies: The case of biosensors. Technological Forecasting and Social Change, 79(5), 862-874.
Wang, Y. F., Chuang, Y. L., Hsu, M. H., & Keh, H. C. (2004). A personalized recommender system for the cosmetic business. Expert Systems with Applications, 26(3), 427-434.
World Intellectual Property Organization (2009). International patent classification (version 2009) guide. Retrieved Dec, 10, 2009, from http://www.wipo.int/export/sites/
www/classifications/ipc/en/guide/guide_ipc_2009.pdf
World Intellectual Property Organization (2013). Cooperative Patent Classification (CPC). Retrieved November 15, 2014, from http://ep.espacenet.com/help?locale=
en_EP&method=handleHelpTopic&topic=cpc
Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Applied microbiology and biotechnology, 56(1-2), 17-34.