|
[1] Perez, E. A. Microtubule inhibitors: Differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol. Cancer Ther. 2009, 8, 2086−2095. [2] Jordan, M. A, Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 2004, 4, 253−265. [3] Gascoigne, K. E.; Li, G.; Taylor, S. S. How do anti-mitotic drugs kill cancer cells? J. Cell. Sci. 2009, 122, 2579−2585. [4] Huzil, J. T.; Chen, K.; Kurgan, L.; Tuszynski, J. A. Microtubulin binding sites as target for developing anticancer agents. Mini. Rev. Med. Chem. 2009, 122, 2579−2585. [5] Islam, M. N.; Iskander, M. N. The roles of beta-tubulin mutations and isotype expression in acquired drug resistance. Cancer Inform. 2007, 3, 159−181. [6] Jordan, M. A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents 2002, 2, 1−17. [7] Morris, P. G.; Fornier, M. N. Microtubule active agents: beyond the taxane frontier. Clin. Cancer Res. 2008, 14, 7167−7172. [8] Pérez-Pérez, M. J.; Priego, E. M.; Bueno, O.; Martins, M. S.; Canela, M. D.; Liekens, S. Blocking blood flow to solid tumors by destabilizing tubulin: an approach to targeting tumor growth. J. Med. Chem. 2016, 59, 8685−8711. [9] Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D. D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res. 2012, 29, 2943−2971. [10] Shan, B.; Medina, J. C.; Santha, E.; Frankmoelle, W. P.; Chou, T.-C.; Learned, R. M.; Narbut, M. R.; Stott, D.; Wu, P.; Jaen, J. C.; Rosen, T.; Timmermans, P. B.; Beckmann, H. Selective, covalent modification of β-tubulin residue Cys-239 by T138067, an antitumor agent with in vivo efficacy against multidrug-resistant tumors. Proc. Natl. Acad. Sci. 1999, 96, 5686−5691. [11] Chang, T. Y.; Tu, Y. P.; Wei, W. Y.; Chen, H. Y.; Chen, C. S.; Lee, Y. S.; Huang, J.-J.; Sha, C. K. Synthesis and antiproliferative activities of ottelione a analogues. ACS Med. Chem. Lett. 2012, 30, 1075−1080. [12] Tetsuo, M.; Mitsuo, Y.; Takayuki, D.; Lau, J. Pyrimidine-5-carboxamide compounds, process for producing the same and use thereof, EP 1223170 (A4); EP 1223170 (B1); US 7087597 (B1); WO 0127105 (A1); DE 60025243 (T2); AU 7683500 (A); AT 314362 (T). [13] Chen, G.; Shan, W.; Wu, Y.; Ren, L.; Dong, J.; Ji, Z. Synthesis and anti-inflammatory activity of resveratrol analogs. Chem. Pharm. Bull. 2005, 53, 1587−1590. [14] Hoops, G. C.; Park, J; Garcia, G. A.; Townsend, L. B. The synthesis and determination of acidic ionization constants of certain 5-substituted 2-aminopyrrolo[2,3-d]pyrimidin-4-ones and methylated analogs. J. Heterocyclic Chem. 1996, 33, 767−781. [15] Kelley, J. L.; Davis, R. G.; McLean, E. W.; Glen, R. C.; Soroko, F. E.; Cooper, B. R. Synthesis and anticonvulsant activity of N-benzylpyrrolo[2,3-d]-pyrazolo[3,4-d]-, and -triazolo[4,5-d]pyrimidines: imidazole ring-modified analogues of 9-(2-fluorobenzyl)-6-(methylamino)-9H-purine. J. Med. Chem. 1995, 38, 3884−3888. [16] Ibrahim, P. N.; Spevak, W.; Cho, H.; Shi, S. Compounds and methods for kinase modulation, and indications therefor, US 8153641 (B2); UY 31829 (A); WO 2009143024 (A2); WO 2009143024 (A3); TW 200948815 (A); PE 18462009 (A1); AR 071838 (A1). [17] Micale, N.; Ettari, R.; Lavecchia, A.; Giovanni, C.-D.; Scarbaci, K.; Troiano, V.; Grasso, S.; Novellino, E.; Schirmeister, T.; Zappalà, M. Development of peptidomimetic boronates as proteasome inhibitors. Eur. J. Med. Chem. 2013, 64, 23−34. [18] Diederichsen, U.; Schmitt, H. W. β-Homoalanyl-PNA: A special case of β-peptides with β-sheet-like backbone conformation; organization in higher ordered structures. Eur. J. Med. Chem. 1998, 827−835. [19] Chen, C.-H.; Daria, M.-R.; Yang, W. Mitochondrial aldehyde dehydrogenase-2 modulators and methods of use thereof, WO 2008112164 (A3); US 2015105456 (A1); US 9315484 (B2); US 2012010248 (A1); US 9102651 (B2); US 2009082431 (A1); US 2011105602 (A2); KR 20090117950 (A); JP 2015061836 (A); JP 2010523476 (A); EP2126574 (A2); EP 2126574 (A4); EP 2126574 (B1); CN 101669030 (A); CN 101669030 (B); CA 2679882 (A1); CA 2679882 (C); AU 2008226947 (A1); AU 2008226947 (B2). [20] Zhao, C.; Toste, F. D.; Raymond, K. N.; Bergman, R. G. Nucleophilic substitution catalyzed by a supramolecular cavity proceeds with retention of absolute stereochemistry. J. Am. Chem. Soc. 2014, 136, 14409−14412. [21] Nauš, P.; Caletková, O.; Konečný, P.; Džubák, P.; Bogdanová, K.; Kolář, M.; Vrbková, J.; Slavětínská, L.; Tloušt'ová, E.; Perlíková, P.; Hajdúch, M.; Hocek, M.; Synthesis, cytostatic, antimicrobial, and anti-HCV activity of 6-substituted 7-(het)aryl-7-deazapurine ribonucleosides. J. Med. Chem. 2014, 57, 1097−1110.
|