跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 05:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡恭祥
研究生(外文):Gong-Siang Hu
論文名稱:4-取代之7-(3-氟-4-甲氧苯甲基)-7H-吡咯[2,3-d] 嘧啶化合物之合成與抗癌活性評估
論文名稱(外文):Synthesis and Antiproliferative Activity of 4-Substituted 7-(3-fluoro-4-methoxybenzyl)-7H-pyrrolo[2,3-d]pyrimidines
指導教授:黃建智黃建智引用關係
指導教授(外文):Jiann-Jvh Huang
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:應用化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
畢業學年度:105
語文別:中文
論文頁數:125
中文關鍵詞:微管蛋白抑制劑
外文關鍵詞:tubulin inhibitorsmicrotubule binding drugsantimitotic agentsMitotic Spindle poisons
相關次數:
  • 被引用被引用:0
  • 點閱點閱:53
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文報導4-substituted 7-(3-fluoro-4-methoxybenzyl)-7H-pyrrolo[2,3-d]pyrimidines 11–40之合成與其抗癌活性評估。本人以3-fluoro-4-methoxybenzaldehyde (5)和4-methoxybenzaldehyde (8)為起始物,以NaBH4對其上之formyl group進行reduction,可生成其對應之醇類6a與9,產率分別為93%與88%。本人亦使methylmagnesium bromide與5進行反應,使其生成二級醇6b,產率為96%。化合物6a與9可利用SOCl2將其上之hydroxyl group轉換成chloro atom,生成benzylic chloride 7a與10,產率分別為95%與94%,而化合物6b可與oxalyl chloride反應生成benzylic chloride 7b。化合物7a、7b及10可對市售藥品4-chloro-7H-pyrrolo[2,3-d]pyrimidine (4) 進行alkylation,生成N-7 alkylated 4-chloro-7H-pyrrolo[2,3-d]pyrimidines 3a–c中間體,產率為23–93%。最後本人於中間體3a–c之C–4的位置引入alkoxy、hydroxyl、amino、alkylamino、alkylthio、alkyl、vinyl group等取代基,即可生成各式之4-substituted 7-(3-fluoro-4-methoxybenzyl)-7H-pyrrolo[2,3-d]pyrimidines 11–40,產率為20–99%,其中化合物35在其濃度為1.0 µM時,降低MDA-MB-231和MDA-MB-468乳癌細胞之cell viability,分別為控制組之9.2%和1.1%。
In this thesis, I reported the synthesis and antiproliferative activity of of 4-substituted 7-(3-fluoro-4-methoxybenzyl)-7H-pyrrolo[2,3-d]pyrimidines 11–40. 3-Fluoro-4-methoxybenzaldehyde (5) and 4-methoxybenzaldehyde (8) served as the staring materials and were reduced with NaBH4 to afford the corresponding alcohols 6a and 9 in 93% and 88% yields, respectively. Reaction of 8 with methylmagnesium bromide gave the secondary alcohol 6b in 96% yield. The hydroxy group in 6a, 6b, and 9 was transformed into a chloro atom by SOCl2 or (COCl)2 to give the desired benzylic chlorides 7a, 7b, and 10 in 94–95% yields. Compounds 7a, 7b, and 10 were allowed to react with commercially available 4-chloro-7H-pyrrolo[2,3-d]pyrimidine (4) to give N-7 alkylated 4-chloro-7H-pyrrolo[2,3-d]pyrimidines 3a–c as the key intermediates in 23–93% yields. Intermediates 3a–c were eventually reacted with alkoxy, hydroxyl ,amino, alkylamino, alkylthio, alkyl, vinyl group at their C–4 position to give the desired 11–40 in 20–99% yields. Among 11–40, compound 35 displayed the best in vitro activities. At the concentration of 1.0 µM, it redcued the cell viabilities of MDA-MB-231 and MDA-MB-468 breast cancer cells to 9.2% and 1.1%, respectively.
中文摘要……………………………………………………………………………I
Abstract …………………………………………………………………………II
謝誌…………………………………………………………………………………III
一、簡介………………………………………………………………………………2
1.Tublin生物功能…………………………………………………………2
2.微管蛋白抑制劑…………………………………………………………………3
3.微管蛋白抑制劑與微管蛋白作用的位置………………………………………4
4.Vascular Disrupting Agent………………………………………………6
5. Colchine binding site目前臨床作用研究情形………………………7
6. T138067自殺型抑制劑…………………………………………………………8
二、藥物設計………………………………………………………………………10
三、結果與討論……………………………………………………………………………………12
1.關鍵中間體4-chloro-7-(3-fluoro-4-methoxybenzyl)-7H-pyrrolo[2,3-d]pyrimidine (3a)之合成……………………………………………12
2. 4-Substituted -7-(3-fluoro-4-methoxybenzyl)-7H-pyrrolo[2,3-d]pyrimidine衍生物之合成 …………………………………………12
3.中間體4-chloro-7-[1-(3-fluoro-4-methoxyphenyl)ethyl]-7H-pyrrolo[2,3-d]pyrimidine (3b)之合成…………………………………16
4. 4-Substituted-7-[1-(3-fluoro-4-methoxyphenyl)ethyl]-7H-pyrrolo[2,3-d]pyrimidine衍生物之合成………………………………17
5. 中間體4-chloro-7-(4-methoxybenzyl)-7H-pyrrolo[2,3-d]pyrimidine (3c)之合成………19
6. 化合物11–40抗癌活性測試………………………………………………20
四、結論…………………………………………………………………………25
五、實驗步驟……………………………………………………………………26
六、參考文獻……………………………………………………………………46
七、光譜數據……………………………………………………………………49
[1] Perez, E. A. Microtubule inhibitors: Differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol. Cancer Ther. 2009, 8, 2086−2095.
[2] Jordan, M. A, Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 2004, 4, 253−265.
[3] Gascoigne, K. E.; Li, G.; Taylor, S. S. How do anti-mitotic drugs kill cancer cells? J. Cell. Sci. 2009, 122, 2579−2585.
[4] Huzil, J. T.; Chen, K.; Kurgan, L.; Tuszynski, J. A. Microtubulin binding sites as target for developing anticancer agents. Mini. Rev. Med. Chem. 2009, 122, 2579−2585.
[5] Islam, M. N.; Iskander, M. N. The roles of beta-tubulin mutations and isotype expression in acquired drug resistance. Cancer Inform. 2007, 3, 159−181.
[6] Jordan, M. A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents 2002, 2, 1−17.
[7] Morris, P. G.; Fornier, M. N. Microtubule active agents: beyond the taxane frontier. Clin. Cancer Res. 2008, 14, 7167−7172.
[8] Pérez-Pérez, M. J.; Priego, E. M.; Bueno, O.; Martins, M. S.; Canela, M. D.; Liekens, S. Blocking blood flow to solid tumors by destabilizing tubulin: an approach to targeting tumor growth. J. Med. Chem. 2016, 59, 8685−8711.
[9] Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D. D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res. 2012, 29, 2943−2971.
[10] Shan, B.; Medina, J. C.; Santha, E.; Frankmoelle, W. P.; Chou, T.-C.; Learned, R. M.; Narbut, M. R.; Stott, D.; Wu, P.; Jaen, J. C.; Rosen, T.; Timmermans, P. B.; Beckmann, H. Selective, covalent modification of β-tubulin residue Cys-239 by T138067, an antitumor agent with in vivo efficacy against multidrug-resistant tumors. Proc. Natl. Acad. Sci. 1999, 96, 5686−5691.
[11] Chang, T. Y.; Tu, Y. P.; Wei, W. Y.; Chen, H. Y.; Chen, C. S.; Lee, Y. S.; Huang, J.-J.; Sha, C. K. Synthesis and antiproliferative activities of ottelione a analogues. ACS Med. Chem. Lett. 2012, 30, 1075−1080.
[12] Tetsuo, M.; Mitsuo, Y.; Takayuki, D.; Lau, J. Pyrimidine-5-carboxamide compounds, process for producing the same and use thereof, EP 1223170 (A4); EP 1223170 (B1); US 7087597 (B1); WO 0127105 (A1); DE 60025243 (T2); AU 7683500 (A); AT 314362 (T).
[13] Chen, G.; Shan, W.; Wu, Y.; Ren, L.; Dong, J.; Ji, Z. Synthesis and anti-inflammatory activity of resveratrol analogs. Chem. Pharm. Bull. 2005, 53, 1587−1590.
[14] Hoops, G. C.; Park, J; Garcia, G. A.; Townsend, L. B. The synthesis and determination of acidic ionization constants of certain 5-substituted 2-aminopyrrolo[2,3-d]pyrimidin-4-ones and methylated analogs. J. Heterocyclic Chem. 1996, 33, 767−781.
[15] Kelley, J. L.; Davis, R. G.; McLean, E. W.; Glen, R. C.; Soroko, F. E.; Cooper, B. R. Synthesis and anticonvulsant activity of N-benzylpyrrolo[2,3-d]-pyrazolo[3,4-d]-, and -triazolo[4,5-d]pyrimidines: imidazole ring-modified analogues of 9-(2-fluorobenzyl)-6-(methylamino)-9H-purine. J. Med. Chem. 1995, 38, 3884−3888.
[16] Ibrahim, P. N.; Spevak, W.; Cho, H.; Shi, S. Compounds and methods for kinase modulation, and indications therefor, US 8153641 (B2); UY 31829 (A); WO 2009143024 (A2); WO 2009143024 (A3); TW 200948815 (A); PE 18462009 (A1); AR 071838 (A1).
[17] Micale, N.; Ettari, R.; Lavecchia, A.; Giovanni, C.-D.; Scarbaci, K.; Troiano, V.; Grasso, S.; Novellino, E.; Schirmeister, T.; Zappalà, M. Development of peptidomimetic boronates as proteasome inhibitors. Eur. J. Med. Chem. 2013, 64, 23−34.
[18] Diederichsen, U.; Schmitt, H. W. β-Homoalanyl-PNA: A special case of β-peptides with β-sheet-like backbone conformation; organization in higher ordered structures. Eur. J. Med. Chem. 1998, 827−835.
[19] Chen, C.-H.; Daria, M.-R.; Yang, W. Mitochondrial aldehyde dehydrogenase-2 modulators and methods of use thereof, WO 2008112164 (A3); US 2015105456 (A1); US 9315484 (B2); US 2012010248 (A1); US 9102651 (B2); US 2009082431 (A1); US 2011105602 (A2); KR 20090117950 (A); JP 2015061836 (A); JP 2010523476 (A); EP2126574 (A2); EP 2126574 (A4); EP 2126574 (B1); CN 101669030 (A); CN 101669030 (B); CA 2679882 (A1); CA 2679882 (C); AU 2008226947 (A1); AU 2008226947 (B2).
[20] Zhao, C.; Toste, F. D.; Raymond, K. N.; Bergman, R. G. Nucleophilic substitution catalyzed by a supramolecular cavity proceeds with retention of absolute stereochemistry. J. Am. Chem. Soc. 2014, 136, 14409−14412.
[21] Nauš, P.; Caletková, O.; Konečný, P.; Džubák, P.; Bogdanová, K.; Kolář, M.; Vrbková, J.; Slavětínská, L.; Tloušt'ová, E.; Perlíková, P.; Hajdúch, M.; Hocek, M.; Synthesis, cytostatic, antimicrobial, and anti-HCV activity of 6-substituted 7-(het)aryl-7-deazapurine ribonucleosides. J. Med. Chem. 2014, 57, 1097−1110.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top