跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 19:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖千儀
論文名稱:不同尺寸之氧化鋅奈米柱對氨氣感測研究
論文名稱(外文):Ammonia gas sensor based on ZnO nanorod with various dimension
指導教授:余昌峰余昌峰引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:電子物理學系光電暨固態電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:105
語文別:中文
中文關鍵詞:脈衝雷射蒸鍍法 (PLD)氧化鋅奈米柱化學水浴法氨氣感測響應
外文關鍵詞:pulsed laser deposition (PLD)ZnO nanorodsChemical bath deposition (CBD)NH3 sensing response
相關次數:
  • 被引用被引用:1
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
不同種類的氨氣傳感器如半導體傳感器和電化學傳感器具有小尺寸、高靈敏度、低成本與良好的可靠性等等優點。而由於氧化鋅具有良好的電性與光電性質,是已經被實際應用的半導體材料。近年來,氧化鋅奈米柱已經被證明在太陽能電池、生物傳感器、紫外光檢測與濕度感測等等廣泛的應用。而化學水浴法(CBD)由於其成本低且易於生長是目前最被看好生長氧化鋅奈米柱的技術。為了研究紫外光輔助化學水浴法在各種水溶液濃度下對氨氣感測性能的影響。在本研究中,使用了不同的水溶液濃度(10mM 、30mM與45mM)中,並觀測紫外光的輔助與否是否對奈米柱生長之特徵造成影響。而得出利用紫外光輔助,能夠在GZO晶種層上成功的生長垂直排列且均勻的氧化鋅奈米柱。而在物性量測方面,透過XRD與FE-SEM可以量測其結晶及表面形貌。最後在大氣環境底下通入氨氣來測量氧化鋅奈米柱之傳感特性。
在實驗結果中得知,不同水溶液濃度的氧化鋅奈米柱傳感器對氨的感應皆不同,而最佳的條件為在45mM莫爾濃度中利用紫外光輔助生長60分鐘。在300K的環境下,氨氣感測響應作為化學水浴法中水溶液濃度與紫外光照射有函數關係,在紫外光的輔助下,對於氨氣的感測響應也將提高。此種現象可能是由於氧化鋅奈米柱的垂直均勻排列結構有關。在紫外光的輔助下的化學水浴法,吸附的氧離子對氧化鋅奈米柱而言有較高的電負性。因此在本研究中,在45mM和紫外光輔助照射下獲得最高的氨氣感測響應。在本研究中顯示在室溫下暴露於NH3氣體時,氧化鋅奈米柱對於氨氣皆能有至少5%的響應值。
Among different kinds of ammonia sensors, such as semiconductor sensors and and electrochemical sensors have many superior advantages including high speed, small size, high sensitivity, low cost and good reliability. ZnO is a useful semiconductor material for various practical applications due to its desirable electronic, optical and chemical properties. Recently, ZnO nanorods (NRs) have been demonstrated to have wide applications in solar cells, biosensors, nanogenerators, ultraviolet detectors, and humidity sensing, etc... The chemical bath deposition (CBD) method is considered a promising technique to synthesize ZnO nanorods owing to its low cost and ease of growth. In order to study the influence of UV light assisted chemical bath deposition (CBD) in various aqueous solution concentrations on the ammonia-gas-sensing performance. In this study, we investigate the characteristics of ZnO nanorods grown with and without UV light assisted chemical bath deposition (CBD) in various aqueous solution concentrations (10mM, 30mM 45mM and 70mM). Vertically well-aligned and uniform ZnO nanorods were successfully grown on GZO seed layer with introducing a UV light into chemical bath deposition in situ. For the physical characteristics, the crystallization and surface morphology of the ZnO nanorods were obtained by XRD and FE-SEM, The ammonia-gas-sensing response characteristics of ZnO- nanorods were measured with the electrical resistances under an atmospheric air and an NH3-contained atmosphere for a steady-state situation, respectively.
The results show that the ZnO nanorods sensors with different aqueous solution concentrations of CBD process had obvious responses to the ammonia. The optimal condition is that the ZnO nanorod was deposited with 45mM aqueous solution concentration of UV assisted CBD. It shows the NH3 sensing response as a function of aqueous solution concentration and UV assisted irradiation in CBD process under NH3 gas concentrations at 300 K. It is found that the NH3 sensing response is increased as the UV light was irradiated in CBD process. This phenomenon could be due to the reaction effects of oxygen species at well-align ZnO nanorod structure. In other words, at UV assisted treatment in CBD, the adsorbed oxygen ions give the highest electronegativity to the ZnO nanorods. With UV assisted treatment, on the contrary, the adsorbed O− ions are easily changed to O2− ions, which lead to the increase in NH3 sensing response. Thus, the maximum NH3 sensing response are obtained at 45mM and UV-assisted irradiation in this study. An enlarged view of NH3 sensing response upon exposure to NH3 gases is shown in this study. The NH3 sensing response values for device are over 5% when NH3 gases are introduced at 300K.
摘要 i
Abstract iii
致謝 v
目錄 1
表目錄 4
圖目錄 5
第一章 緒論 8
1-1前言 8
1-2氣體感測器 9
1-3氧化鋅材料簡介 11
1-4氧化鋅摻雜鎵之薄膜製備 13
1-4-1脈衝雷射蒸鍍(Pulse Laser Deposition,PLD) 14
1-5研究動機 17
第二章 理論基礎與文獻回顧 18
2-1氧化物半導體氣體感測器 18
2-2化學水浴沉積法 21
2-3氧化鋅對於氨氣電阻變化機制 23
2-4表面積對於氨氣感測之效益改變 24
第三章 實驗方法與步驟 25
3-1實驗流程 25
3-2 GZO靶材製作 26
3-3 GZO薄膜沉積 27
3-4氧化鋅(ZnO)奈米柱成長 29
3-5量測與分析 32
3-5-1 XRD量測 32
3-5-2 NH3氣體感測架構 35
3-5-3 冷場發射掃描式顯微鏡(FE-SEM) 36
3-5-4 氨氣靈敏度與循環度測試 38
第四章 實驗結果與分析 40
4-1 X-ray Diffraction分析(XRD) 40
4-2氧化鋅奈米柱之SEM幾何形貌分析 42
4-2-1紫外光輔助氧化鋅奈米柱生長 42
4-2-2 10mM莫爾濃度氧化鋅奈米柱 45
4-2-3 30mM莫爾濃度氧化鋅奈米柱 46
4-2-4 45mM莫爾濃度氧化鋅奈米柱 47
4-2-5 70mM莫爾濃度氧化鋅奈米柱 48
4-2-6 通過氨氣感測之氧化鋅奈米柱 49
4-3氨氣感測之靈敏度量測 51
4-3-1不同生長濃度之氨氣變化量與重複性 51
4-3-2 45mM氨氣感測之靈敏度量測 54
4-4 45mM氨氣感測之重複性量測 58
第五章 結論 61
參考文獻 63
1. 施冠卉. 國家環境毒物研究中心-氨; Available from: http://nehrc.nhri.org.tw/toxic./toxfaq_detail.php?id=22.
2. Mani, G.K. and J.B.B. Rayappan, A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sensors and Actuators B: Chemical, 2013: pp. 459-466.
3. Jiaqiang, Xu, Qingyi Pan, Yu an Shun. and Zhizhuang Tian, Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators B: Chemical, 2000: pp. 277-279.
4. 氣體感測器. Available from: http://www.twwiki.com/wiki/%E6%B0%A3%E9%AB%94%E6%84%9F%E6%B8%AC%E5%99%A8.
5. Kwok K Hung, Ping K. Ko, Chenming Hu and Yiu C. Cheng, A Unified Model for the Flicker Noise in MetalOxide-Semiconductor Field-Effect Transistors.IEEE, 1990. 37: pp. 654-665.
6. 橫翼國際. 各種傳感器的感測原理與優缺點. Available from: http://www.safetygas.com.tw/pdf/%E5%90%84%E7%A8%AE%E5%82%B3%E6%84%9F%E5%99%A8%E7%9A%84%E6%84%9F%E6%B8%AC%E5%8E%9F%E7%90%86%E8%88%87%E5%84%AA%E7%BC%BA%E9%BB%9E.pdf.
7. B.H.Choi and H.B.Im, Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering. Thin Solid Films, 1990: pp. 193-194.
8. I.Sieber, N.Wanderka, I.Urban, I.Dorfel, E.Schierhorn, F.Fenske and W.Fuhs, Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels. Thin Solid Film, 1998: pp. 108-113.
9. D.J. Qiu, H.Z. Wu, A.M. Feng, Y.F. Lao, N.B. Chen and T.N. Xu, Annealing effects on the microstructure and photoluminescence properties of Ni-doped ZnO films. Applied Surface Science, 2004. 222(1-4): pp. 263-268.
10. Elvira M.C.Forunato, Pedro M.C.Barquinha, Ana C.M.B.G.Pimentel, Alexandra M.F.Goncalves, Antonio J.S.Marques, Rodrigo F.P Martins and Luis M.N. Pereira, Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Applied Physics Letters, 2004. 85: pp. 2541-2543.
11. P.F.Carcia, R.S.McLean, M.H.Reilly and Nunes.Jr, Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters, 2002. 82: p. 1117-1119.
12. Xu Zi-qiang, Deng Hong, Li Yan and Cheng Hang, Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO:Al thin films. Materials Science in Semiconductor Processing, 2006: pp. 132-135.
13. 莊達人, VLSI製造技術. 高立圖書股份有限公司, 2003.
14. Y.Segawa, A. Ohtomo, M. Kawasaki, H. Koinuma, Z.K.Tang, P. Yu and G.K.L.WONG, Growth of ZnO Thin Film by Laser MBE: Lasing of Exciton at Room Temperature. physica status solidi (b), 1997. 202(2): pp. 669-672.
15. Elvira M.C.Fortunato, Pedro M.C.Barquinha, Ana C.M.B.G.Pimentel, Alexandra M.F.Goncalves, Antonio J.S.Marques, Luis M.N.Pereira and Rodrigo F.P.Martins, Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature. Adv. Mater., 2005. 17(5): pp. 590-594.
16. 陳銘堯, 簡介脈衝雷射蒸鍍法. 物理雙月刊15卷5期, 1993: p. 669.
17. B.J.Jin, S.H.Bae, S.Y.Lee and S.Im, Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition. Materials Science and Engineering: B, 2000: pp. 301-305.
18. Chapman, B., Glow Discharge Processes. Thin Film Processes II, 1980. :pp.606-611
19. P.Mirtra, A.P.Chatterjee, and H.S. Maiti, ZnO thin film sensor. Materials Letters, 1998: pp. 33-38.
20. Jun Tamaki, Chizuko Naruo, oshifumi Yamamoto and Masao Matsuoka, Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation. Sensors and Actuators B: Chemical, 2002. 83(1-3): pp. 190-194.
21. Yamazoe, N., G. Sakai, and K. Shimanoe, Oxide semiconductor gas sensors. Catalysis Surveys from Asia, 2003: pp. 63-75.
22. J.Watson, The stannic oxide gas sensor. Sensor Review, 1994. 14(1): pp. 20-23.
23. Tetsuro Seiyama, Akio Kato, Kiyoshi Fujiishi, Masanori Nagatani, A New Detector for Gaseous Components Using Semiconductive Thin Films. Anal.Chem, 1962: pp. 1502-1503.
24. F.Paraguay D., M.Miki-Yoshida, J.Morales, J.Solis and W.Estrada L., Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. The Solid Films, 2000. 373(1-2): pp. 137-140.
25. Wei Ang, Wang Zhao, Pan Liu-Hua, Li Wei-Wei, Xiong Li, Dong Xiao-Chen and Huang Wei, Room-Temperature NH3 Gas Sensor Based on Hydrothermally Grown ZnO Nanorods. Chinese Physics Letters, 2011: pp. 080702-1-080702-4.
26. Edson R. Lete, Ingrid T. Webe, Elsn Longo and Jose A. Varela, A New Method to Control Particle Size and Particle Size Distribution of SnO2 Nanoparticles for Gas Sensor Applications. Adv.Mater, 2000: pp. 965-968.
27. Thomas Waitz, Thorsten Wagner, Tilman Sauewald, Claus-Dieter Kohl and Michael Tiemann, Ordered Mesoporous In2O3: Synthesis by StructureReplicatio n and Application as a Methane Gas Sensor. Adv.Mater, 2009: pp. 653-661.
28. L.Vayssieres, Designing ordered nanoarrays from aqueous solutions. Pure and Applied Chemistry, 2006. 78(9): pp. 1741-1747.
29. Lionel Vayssieres, Karin Keis, Sten-Eric Lindquist and Anders Hagfeldt, Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO. The Journal of Physical Chemistry B, 2001: pp. 3350-3352.
30. Kuveshni Govender, David S. Bole, Peter B. Kenway and Paul O'Brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. Journal of Materials Chemistry, 2004(16): pp. 2575-2591.
31. Z. H. Jing, and J. H. Zhan; Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater., 2008: pp.4547-4548
32. Shao-Lin Zhang, Jeong-Ok Lim, Jeung-Soo Huh and Wooyoung Lee, Selective Growth of ZnO Nanorods and Its Gas Sensor Application. IEEE, 2012: pp. 3143-3147.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top