|
REFERENCES
1. Asefa T, MacLachlan MJ, Coombs N, Ozin GA. Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 1999, 402(6764): 867-871. 2. Brian JM, Brian TH, Christopher FB, Stein A. Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chemistry of Materials 1999, 11(11): 3302-3308. 3. Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. Journal of the American Chemical Society 1999, 121(41): 9611-9614. 4. Corriu RJP. Ceramics and nanostructures from molecular precursors. Angewandte Chemie International Edition 2000, 39(8): 1376-1398. 5. Mario B, Jürgen M, Piero S, Fröba M. Towards peptide formation inside the channels of a new divinylaniline-bridged periodic mesoporous organosilica. Chemical Communications 2010, 46(14): 2495-2497. 6. Shinji I, Shiyou G, Qihua Y, Mahendra PK, Shimada T. Direct synthesis of porous organosilicas containing chiral organic groups within their framework and a new analytical method for enantiomeric purity of organosilicas. Chemical Communications 2008(2): 202-204. 7. Shea KJ, Loy DA. Bridged polysilsesquioxanes. Molecular- engineered hybrid organic-inorganic materials. Chemistry of Materials 2001, 13(10): 3306-3319. 8. Babak K, Dawood E, James HC, Hunt AJ. Ordered mesoporous organosilica with ionic-liquid framework: an efficient and reusable support for the palladium-catalyzed suzuki-miyaura coupling reaction in water. Chemistry: A European Journal 2010, 16(27): 8047-8053. 9. Norihiro M, Takao T, Inagaki S. Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors. Chemical Society Reviews 2011, 40(2): 789-800. 10. IUPAC. Manual of symbols abd terminology, appendix 2, part I, colloid and surface chemistry. Pure and Applied Chemistry 1972, 31: 578-638. 11. Liu J, Bai S, Zhong H, Li C, Yang Q. Tunable assembly of organosilica hollow nanospheres. The Journal of Physical Chemistry C 2010, 114(2): 953-961. 12. Jennifer EL, Ozin GA. Controlling morphology and porosity to improve performance of molecularly imprinted sol-gel silica. Chemical Society Reviews 2014, 43(3): 911-933. 13. Park SS, Ha CS. Organic–inorganic hybrid mesoporous silicas: functionalization, pore size, and morphology control. The Chemical Record 2006, 6(1): 32-42. 14. Pascal VDV, Dolores E, Els DC, Frederik G, Isabel VD, Salguero FJR. Periodic mesoporous organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications. Chemical Society Reviews 2013, 42(9): 3913- 3955. 15. Sung SP, Madhappan SM, Ha CS. Periodic mesoporous organosilicas for advanced applications. NPG Asia Materials 2014, 6(4): e96. 16. Jonas C, Xavier C, Michel WCM, Audrey G, Laurence R, Philippe T, et al. Biodegradable ethylene-bis(propyl)disulfide-based periodic mesoporous organosilica nanorods and nanospheres for efficient in-vitro drug delivery. Advanced Materials 2014, 26(35): 6174-6180. 17. Dongdong L, Yuping Z, Zhiying F, Jie C, Yu J. Coupling of chromophores with exactly opposite luminescence behaviours in mesostructured organosilicas for high-efficiency multicolour emission. Chemical Science 2015, 6(11): 6097-6101. 18. Xiaoyong Q, Shuhua H, Yongfeng H, Meng G, Wang H. Periodic mesoporous organosilicas for ultra-high selective copper(II) detection and sensing mechanism. Journal of Materials Chemistry A 2014, 2(5): 1493-1501. 19. Meng G, Shuhua H, Yongfeng H, James JD, Xiangguo L, Wang D. A pH-driven molecular shuttle based on rotaxane-bridged periodic mesoporous organosilicas with responsive release of guests. RSC Advances 2016, 6(33): 27922-27932. 20. Xiaoyong Q, Shuhua H, Yongfeng H, Sun B. Ratiometric fluorescent nanosensors for copper(II) based on bis(rhodamine)-derived PMOs with J-type aggregates. Chemistry: A European Journal 2015, 21(10): 4126-4132. 21. Nan L, Ying T, Wei T, Peng H, Ying L, Yuxia T, et al. Smart cancer cell targeting imaging and drug delivery system by systematically engineering periodic mesoporous organosilica nanoparticles. ACS Applied Materials & Interfaces 2016, 8(5): 2985-2993. 22. Gehring J, Schleheck D, Trepka B, Polarz S. Mesoporous organosilica nanoparticles containing superacid and click functionalities leading to cooperativity in biocidal coatings. ACS Applied Materials & Interfaces 2015, 7(1): 1021-1029. 23. Wu HY, Chen CT, Hung IM, Liao CH, Vetrivel S, Kao HM. Direct synthesis of cubic benzene-bridged mesoporous organosilica functionalized with mercaptopropyl groups as an effective adsorbent for mercury and silver ions. The Journal of Physical Chemistry C 2010, 114(15): 7021-7029. 24. Gao M, Han S, Hu Y, Zhang L. Enhanced fluorescence in tetraylnitrilomethylidyne-hexaphenyl derivative-functionalized periodic mesoporous organosilicas for sensitive detection of copper(II). The Journal of Physical Chemistry C 2016, 120(17): 9299-9307. 25. Hao N, Han L, Yang Y, Wang H, Webley PA, Zhao D. A metal-ion- assisted assembly approach to synthesize disulfide-bridged periodical mesoporous organosilicas with high sulfide contents and efficient adsorption. Applied Surface Science 2010, 256(17): 5334-5342. 26. Liliana C, Ana RS, Mirtha AOL, Alvaro M, Isabel D, Ferreira P. Chiral copper(II) bis(oxazoline) complexes directly coordinated to amine-functionalized phenylene/biphenylene periodic mesoporous organosilicas as heterogeneous catalysts. European Journal of Inorganic Chemistry 2016(3):413-421. 27. Xiangju M, Toshiyuki Y, Daling L, Tatsumi T. Synthesis and characterization of chiral periodic mesoporous organosilicas. Angewandte Chemie International Edition 2007, 46(41): 7796- 7798. 28. Yang Q, Liu J, Yang J, Kapoor MP, Inagaki S, Li C. Synthesis, characterization, and catalytic activity of sulfonic acid- functionalized periodic mesoporous organosilicas. Journal of Catalysis 2004, 228(2): 265-272. 29. Inagaki S, Ohtani O, Goto Y, Okamoto K, Ikai M, Yamanaka K, et al. Light harvesting by a periodic mesoporous organosilica chromophore. Angewandte Chemie International Edition 2009, 48(22): 4042-4046. 30. Hiroyuki T, Yasutomo G, Yoshifumi M, Tetsu O, Takao T, Kazunori M, et al. Visible-light-harvesting periodic mesoporous organosilica. Chemical Communications 2009(40): 6032-6034. 31. Grösch L, Lee YJ, Hoffmann F, Fröba M. Light-harvesting three- chromophore systems based on biphenyl-bridged periodic mesoporous organosilica. Chemistry – A European Journal 2015, 21(1): 331-346. 32. Ueda Y, Takeda H, Yui T, Koike K, Goto Y, Inagaki S, et al. A visible-light harvesting system for CO2 reduction using a RuII–ReI photocatalyst adsorbed in mesoporous organosilica. ChemSusChem 2015, 8(3): 439-442. 33. Seino M, Wang W, Lofgreen JE, Puzzo DP, Manabe T, Ozin GA. Low-k periodic mesoporous organosilica with air walls: POSS- PMO. Journal of the American Chemical Society 2011, 133(45): 18082-18085. 34. Goethals F, Ciofi I, Madia O, Vanstreels K, Baklanov MR, Detavernier C, et al. Ultra-low-k cyclic carbon-bridged PMO films with a high chemical resistance. Journal of Materials Chemistry 2012, 22(17): 8281-8286. 35. Redzheb M, Prager L, Naumov S, Krishtab M, Armini S, Voort PVD, et al. Effect of the C-bridge length on the ultraviolet- resistance of oxycarbosilane low-k films. Applied Physics Letters 2016, 108(1): (012902) 012901-012905. 36. Du X, Li X, Xiong L, Zhang X, Kleitz F, Qiao SZ. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 2016, 91: 90-127. 37. Croissant JG, Picard S, Aggad D, Klausen M, Jimenez CM, Maynadier M, et al. Fluorescent periodic mesoporous organosilica nanoparticles dual-functionalized via click chemistry for two-photon photodynamic therapy in cells. Journal of Materials Chemistry B 2016, 4(33): 5567- 5574. 38. Jimenez CM, Knezevic NZ, Rubio YG, Szunerits S, Boukherroub R, Teodorescu F, et al. Nanodiamond-PMO for two-photon PDT and drug delivery. Journal of Materials Chemistry B 2016, 4(35): 5803-5808. 39. Li X, Zhou L, Wei Y, Toni AME, Zhang F, Zhao D. Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. Journal of the American Chemical Society 2014, 136(42): 15086- 15092. 40. Modak A, Barui AK, Patra CR, Bhaumik A. A luminescent nanoporous hybrid material based drug delivery system showing excellent theranostics potential for cancer. Chemical Communications 2013, 49(69): 7644-7646. 41. Zhaogang T, Junjie Z, Wei L, Yuanyi Z, Xiaodan S, Yuxia T, et al. Facile synthesis of yolk-shell-structured triple- hybridized periodic mesoporous organosilica nanoparticles for biomedicine. Small 2016, 12(26): 3550-3558. 42. Qian X, Wang W, Kong W, Chen Y. Hollow periodic mesoporous organosilicas for highly efficient HIFU-based synergistic therapy. RSC Advances 2014, 4(34): 17950-17958. 43. Canck ED, Ascoop I, Sayari A, Voort PVD. Periodic mesoporous organosilicas functionalized with a wide variety of amines for CO2 adsorption. Physical Chemistry Chemical Physics 2013, 15(24): 9792-9799. 44. Ganiyu SO, Bispo C, Bion N, Ferreira P, Batonneau GI. Periodic mesoporous organosilicas as adsorbents for the organic pollutants removal in aqueous phase. Microporous and Mesoporous Materials 2014, 200: 117-123. 45. Lourenço MAO, Silva RM, Silva RF, Pinna N, Pronier S, Pires J, et al. Turning periodic mesoporous organosilicas selective to CO2/CH4 separation: deposition of aluminium oxide by atomic layer deposition. Journal of Materials Chemistry A 2015, 3(45): 22860-22867. 46. Mustafa I, Damián PQ, Sierra I. Bifunctional periodic mesoporous organosilicas with sulfide bridges as effective sorbents for Hg (II) extraction from environmental and drinking waters. Microporous and Mesoporous Materials 2016, 229: 90-97. 47. Antoniou MK, Policicchio A, Dimos K, Gournis D, Karakassides MA, Agostino RG. Naphthalene-based periodic nanoporous organosilicas: II. Hydrogen and methane adsorption and physicochemical study. Microporous and Mesoporous Materials 2012, 158: 332-338. 48. Chandra D, Das SK, Bhaumik A. A fluorophore grafted 2D- hexagonal mesoporous organosilica: excellent ion-exchanger for the removal of heavy metal ions from wastewater. Microporous and Mesoporous Materials 2010, 128(1–3): 34-40. 49. Johnson BJ, Anderson NE, Charles PT, Malanoski AP, Melde BJ, Nasir M, et al. Porphyrin-embedded silicate materials for detection of hydrocarbon solvents. Sensors 2011, 11(1): 886- 904. 50. Johnson BJ, Melde BJ, Peterson GW, Schindler BJ, Jones P. Functionalized organosilicate materials for irritant gas removal. Chemical Engineering Science 2012, 68(1): 376-382. 51. Borah P, Zhao Y. β-Diketimine appended periodic mesoporous organosilica as a scaffold for immobilization of palladium acetate: an efficient green catalyst for wacker type reaction. Journal of Catalysis 2014, 318: 43-52. 52. Elhamifar D, Karimi B, Moradi A, Rastegar J. Synthesis of sulfonic acid containing ionic-liquid-based periodic mesoporous organosilica and study of its catalytic performance in the esterification of carboxylic acids. ChemPlusChem 2014, 79(8): 1147-1152. 53. Elhamifar D, Esfahani MN, Karimi B, Moshkelgosha R, Shábani A. Ionic liquid and sulfonic acid based bifunctional periodic mesoporous organosilica (BPMO–IL–SO3H) as a highly efficient and reusable nanocatalyst for the biginelli reaction. ChemCatChem 2014, 6(9): 2593-2599. 54. Wang J, Zou Y, Sun Y, Hemgesberg M, Schaffner D, Gao H, et al. Electrostatic immobilization of phosphomolybdic acid on imidazolium-based mesoporous organosilicas for catalytic olefin epoxidation. Chinese Journal of Catalysis 2014, 35(4): 532-539. 55. Lazar A, George SC, Jithesh PR, Vinod CP, Singh AP. Correlating the role of hydrophilic/hydrophobic nature of Rh(I) and Ru(II) supported organosilica/silica catalysts in organotransformation reactions. Applied Catalysis A: General 2016, 513: 138-146. 56. Kriegmair M, Baumgartner R, Lumper W, Waidelich R, Hofstetter A. Early clinical experience with 5-aminolevulinic acid for the photodynamic therapy of superficial bladder cancer. British Journal of Urology 1996, 77(5): 667-671. 57. Kennedy JC, Pottier RH. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology 1992, 14(4): 275-292. 58. Abels C, Heil P, Dellian M, Kuhnle GEH, Baumgartner R, Goetz AE. In vivo kinetics and spectra of 5-aminolaevulinic acid- induced fluorescence in an amelanotic melanoma of the hamster. British Journal of Cancer 1994, 70(5): 826-833. 59. Pahernik S, Langer S, Botzlar A, Dellian M, Goetz AE. Tissue distribution and penetration of 5-ALA induced fluorescence in an amelanotic melanoma after topical application. Anticancer Research 2001, 21(1a): 59-63. 60. Ito S, Mitarai A, Hikino K, Hirama M, Sasaki K. Deactivation reaction in the hydroxylation of benzene with Fenton's reagent. The Journal of Organic Chemistry 1992, 57(25): 6937- 6941. 61. Sedlak DL, Andren AW. Oxidation of chlorobenzene with Fenton's reagent. Environmental Science & Technology 1991, 25(4): 777- 782. 62. Tu HL, Lin YS, Lin HY, Hung Y, Lo LW, Chen YF, et al. In vitro studies of functionalized mesoporous silica nanoparticles for photodynamic therapy. Advanced Materials 2009, 21(2): 172-177. 63. www.cc.ntut.edu.tw/~wwwemo/instrument_manual/FTIR.html. 國立台北科技大學 奈米光電磁材料技術研發中心 - FTIR光譜分析檢測. 64. Coates J. Interpretation of infrared spectra, a practical approach. Encyclopedia of Analytical Chemistry 2000. pp. 10815-10837. 65. Stephen B, Paul HE, Teller E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 1938, 60(2): 309-319. 66. Elliott PB, Leslie GJ, Halenda PP. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society 1951, 73(1): 373-380. 67. ibenservice.nhri.org.tw/?page_id=429. 國家衛生研究院 生醫工程與奈米醫學研究所 - DLS & zeta potential. 68. Alice S, David E, Liqing R, Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current- time relationship in electroosmotic flow. Journal of Colloid and Interface Science 2003, 261(2): 402-410. 69. https://en.wikipedia.org/wiki/Ultraviolet%E2%80%93 visible_spectroscopy. (Wikipedia) Ultraviolet - visible spectroscopy. 70. Soares MDV, Oliveira MR, Santos EPD, Gitirana LDB, Barbosa GM, Quaresma CH, et al. Nanostructured delivery system for zinc phthalocyanine: preparation, characterization, and phototoxicity study against human lung adenocarcinoma A549 cells. International Journal of Nanomedicine 2011, 6: 227-238. 71. Lai LH, Fu QH, Liu Y, Jiang K, Guo QM, Chen QY, et al. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacologica Sinica 2012, 33(4): 523-530. 72. www.thermofisher.com/order/catalog/product/88953. Pierce™ LDH cytotoxicity assay kit. 73. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infection and Immunity 2005, 73(4): 1907-1916. 74. www.sigmaaldrich.com/catalog/product/sigma/casp3c? lang=en®ion=TW. Caspase 3 assay kit, colorimetric. 75. Kharkwal GB, Sharma SK, Huang YY, Dai T, Hamblin MR. Photodynamic therapy for infections: clinical applications. Lasers in Surgery and Medicine 2011, 43(7): 755-767. 76. Maisch T. A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment. Mini Reviews in Medicinal Chemistry 2009, 9(8): 974-983. 77. Malik Z, Ladan H, Nitzan Y. Photodynamic inactivation of gram- negative bacteria: problems and possible solutions. Journal of Photochemistry and Photobiology B: Biology 1992, 14(3): 262- 266. 78. Yeshayahu N, Mina G, Zvi M, Ehrenberg B. Inactivation of gram- negative bacteria by photosensitized porphyrins. Photochemistry and Photobiology 1992, 55(1): 89-96. 79. Valduga G, Bertoloni G, Reddi E, Jori G. Effect of extracellularly generated singlet oxygen on gram-positive and gram-negative bacteria. Journal of Photochemistry and Photobiology B: Biology 1993, 21(1): 81-86. 80. Soncin M, Fabris C, Busetti A, Dei D, Nistri D, Roncucci G, et al. Approaches to selectivity in the Zn(II)-phthalocyanine- photosensitized inactivation of wild-type and antibiotic- resistant Staphylococcus aureus. Photochemical & Photobiological Sciences 2002, 1(10): 815-819. 81. Schastak S, Ziganshyna S, Gitter B, Wiedemann P, Claudepierre T. Efficient photodynamic therapy against gram-positive and gram-negative bacteria using THPTS, a cationic photosensitizer excited by infrared wavelength. PLOS ONE 2010, 5(7): e11674. 82. zh.biology.wikia.com/wiki/%E6%B7%B7%E6%BF%81%E5%BA%A6%E5 %92%8C%E6%B4%BB%E8%8F%8C%E6%95%B8%E7%9A%84%E9%97 %9C%E4%BF%82?variant=zh-tw. Wikia 生物學-混濁度和活菌數的關係. 83. Hoffmann F, Cornelius M, Morell J, Fröba M. Periodic mesoporous organosilicas (PMOs): past, present, and future. Journal of Nanoscience and Nanotechnology 2006, 6(2): 265-288.
|