跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 05:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林家卉
研究生(外文):Chia-Hui Lin
論文名稱:官能基化週期性中孔洞有機奈米矽球作為癌症光動力治療之應用
論文名稱(外文):Functionalization of Periodic Mesoporous Organosilica for Application in Photodynamic Therapy of Cancer
指導教授:李佳洪
指導教授(外文):Chia-Hung Lee
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:75
中文關鍵詞:官能基化週期性中孔洞有機奈米矽球光動力治療原紫質IX
外文關鍵詞:functionalizationperiodic mesoporous organosilicas (PMOs)photodynamic therapy (PDT)protoporphyrin IX (PpIX)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

在生醫材料領域中,藉由藥物載體奈米化,加上腫瘤增生血管有較高通透性所造成的 enhanced permeability and retention (EPR) effect以及在奈米粒子上嫁接靶向分子,可以讓奈米粒子更專一性的進入腫瘤細胞,進而達到增進療效、減低副作用、改善藥物耐受性、提高服藥便利性以及維持較長療效時程等功效。因此奈米粒子的運用漸漸被現代醫學治療重視,現今廣泛應用於藥物控制釋放傳遞系統(drug delivery system, DDS)。

團聚現象是有機奈米粒子在過去研究中常遇到的問題,而奈米粒子在溶液中的均勻度和分散性是生物醫學應用中很重要的因素。本實驗在週期性中孔洞有機奈米矽球(PMO)結構上的苯環進行羥基化作用,藉由含羥基的物質溶解於水會電離出氫離子的現象,增加粒子之間的排斥力,且利用(3-aminopropyl)trimethoxysilane (APTS)後修飾NH2官能基,使粒子本身的靜力趨於平衡,進而減緩粒子的團聚現象。本實驗使用硫酸亞鐵和三氯化鐵兩種不同金屬化合物分別刺激雙氧水達到後修飾OH官能基的目的。PMO後修飾OH和NH2官能基後,利用動態光散射儀(DLS)和比表面積與孔徑分析儀鑑定PMO的物理特徵;利用傅立葉轉換紅外光譜儀(FT-IR)、界面電位(zeta potential)和寧海準試驗(ninhydrin test)確認是否成功後修飾OH和NH2官能基。

不同後修飾的PMO樣品在進行懸浮性測試後,挑選懸浮性較佳的PMO-OH(II)-NH2嫁接(grafted)光感物質原紫質IX (PpIX)。在嫁接PpIX前,對PMO-OH(II)-NH2進行溶血實驗(hemolysis),結果顯示PMO-OH(II)-NH2有高度生物相容性和無細胞毒性,未來可運用於活體實驗中。PMO-OH(II)-NH2嫁接PpIX後(PMO-PpIX),進行光漂白試驗(potobleaching)和單態氧的檢測,其結果顯示,PMO是兼具保護功能的良好載體,可以有效地減緩PpIX的光漂白現象,且嫁接上PMO的PpIX仍具有進行光反應的能力。

最後使用綠光為光源,以大腸癌細胞(HT-29)和大腸桿菌(E. coli)為對象進行光動力治療(PDT),探討其治療效果。以HT-29為對象的PDT結果顯示,經過綠光處理的樣品,不管濃度高低,PMO-PpIX的細胞存活率皆比free PpIX低,此結果說明PMO-PpIX比free PpIX更有利於光動力。乳酸脫氫酶試驗(LDH assay)和caspase-3 assay的結果顯示,PMO-PpIX引導的細胞死亡方式為細胞凋亡,此結果暗示使用PMO-PpIX的PDT所造成的細胞死亡不會引發發炎反應,因此更有利於未來臨床實驗的發展。光動力抗菌實驗的結果顯示,處理1 mg/ml PMO-PpIX的實驗組和沒有處理粒子的對照組相比,實驗組可以讓菌落生長數驟減4倍,此結果說明利用PMO-PpIX對E. coli進行PDT是有效的。以增加懸浮穩定性後的PMO為載體,嫁接光敏物質PpIX,經以上實驗結果證明,增加懸浮穩定性後的PMO確實可以成為抗癌和抗菌的基礎實驗平台。
ABSTRACT

In the field of biomedical materials, nanoparticles have been developed as drug carriers in chemotherapy. Angiogenesis of tumor vessels facilitates higher permeability due to the enhanced permeability and retention (EPR) effect, while grafting targeted molecules on to surfaces have improved the specificity and have been internalized into the tumor cells. This enhances therapeutic efficacy, reduces side effects, improves drug tolerance, increases medication convenience, and maintain a longer duration of therapy as well as other effects. Therefore, the applications of nanoparticles have increased gradually as a drug delivery system (DDS) for new therapeutic modalities.

Past research has revealed that the poor stability of PMOs in solution is a most commonly encountered problem by organic nanoparticles. The dispersion of nanoparticles in solution is a very important factor in biomedical applications. In this study, hydroxylation was performed directly on the benzene rings located on the surface structure of the PMOs. Since the dissolution of hydroxyl-containing substances in water will ionize the hydrogen ions, this will enhance the repulsion between the particles and (3-aminopropyl) trimethoxysilane (APTS) is used to modify NH2 functional groups so that the charges of the particles themselves tend to balance, thus slowing down the aggregation of the particles. In this experiment, metal compounds are mainly used to stimulate hydrogen peroxide (H2O2) to achieve the goal of modifying the OH functional groups with two different metal compounds used, ferrous sulfate (FeSO4) and iron (III) chloride hexahydrate (FeCl3). After PMOs modified the OH and NH2 functional groups, dynamic light scattering (DLS), surface area and a porosimetry analyzer were used to identify the physical characterization of PMOs. Fourier transform infrared spectrometer (FT-IR), zeta potential and a ninhydrin test were used to confirm that the OH and NH2 functional groups had been modified successfully.

The stability of different PMOs suspensions were tested with the most stable suspension, PMO-OH(II)-NH2 chosen to graft the photosensitizer protoporphyrin IX (PpIX). Before grafting PpIX, PMO-OH(II)-NH2 hemolysis assay was performed and the results showed that PMO-OH(II)-NH2 has high biocompatibility and no cytotoxicity. Therefore, in the future, it can be used in in vivo experiments. After PMO-OH(II)-NH2 grafting PpIX (PMO-PpIX), a photobleaching test and the detection of singlet oxygen production were performed with the results showing that PMOs are good carriers that can effectively slow down the PpIX photobleaching while PpIX still has the ability to perform a photochemical reaction.

Eventually, the designed formulation was explored for photodynamic evaluation in cancer (HT-29) and bacteria (E. coli) using a green light as the light source. By using the HT-29 as the object in photodynamic therapy (PDT), it was shown that when samples were treated with the green light, regardless of concentration levels, the cell viability of the PMO-PpIX group was lower than the free PpIX group with the PMO-PpIX group IC50 18 µg/ml and the free PpIX group IC50 50 µg/ml, so the above results suggest that PMO-PpIX is more beneficial to use than free PpIX in PDT. The results of the lactate dehydrogenase (LDH) assay and caspase-3 assay indicate that PMO-PpIX induced cell death leads to the apoptosis pathway and suggest that cell deaths caused by PDT using PMO-PpIX will not produce the inflammatory response and is therefore more conducive to development in future clinical trials. The results of the photodynamic antibacterial test show that when samples were treated with green light, 1 mg/ml PMO-PpIX group compared with the control group reduced the number of colonies by a factor of four, which indicates that using PMO-PpIX in PDT is effective in treating E. coli infection. In order to use the PMOs that increase the suspension stability as the carrier, the incorporation of photosensitizers in modified PMOs can serve as a useful nano-platform for cancer theranostics and efficacious antibacterial modalities.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS............................................i
中文摘要.....................................................iii
ABSTRACT....................................................v
TABLE OF CONTENTS...........................................ix
LIST OF FIGURES.............................................xiii
LIST OF TABLES..............................................xv
CHAPTER Ⅰ. INTRODUCTION.....................................1
Ⅰ. Periodic mesoporous organosilicas (PMOs)................2
Ⅱ. Photodynamic therapy (PDT)..............................7
Ⅲ. Protoporphyrin IX (PpIX)...............................10
CHAPTER Ⅱ. RESEARCH DESIGN AND PROCESS......................13
CHAPTER Ⅲ. METHOD..........................................17
Ⅰ. Preparation of nanoparticles samples....................17
(i) Synthesis of PMOs....................................17
(ii) Post-modification of OH functional groups...........18
(iii) Amine grafting on PMO-OH...........................19
(iv) Immobilization of activated PpIX....................19
Ⅱ. Identification of synthetic particles...................21
(i) Fourier transform infrared spectrometer (FT-IR)......21
(ii) Surface area and porosimetry analyzer...............21
(iii) Dynamic light scattering (DLS).....................22
(iv) Ultraviolet-visible (UV-Vis) spectrophotometer......23
(v) Ninhydrin test.......................................23
(vi) The stability test of PMOs suspensions..............24
(vii) Biocompatibility study.............................24
(viii) Photobleaching test...............................25
(ix) Detection of singlet oxygen production..............25
Ⅲ. Cell experiment.........................................27
(i) Cell culture.........................................27
(ii) MTT assay...........................................27
(iii) Lactate dehydrogenase (LDH) assay..................29
(iv) Caspase-3 assay.....................................30
(v) Statistics...........................................31
Ⅳ. Antibiotic experiment..................................32
(i) Bacterial culture....................................33
(ii) Antibacterial photodynamic therapy..................34
CHAPTER Ⅳ. RESULTS..........................................35
Ⅰ. Size of PMOs.............................................35
Ⅱ. Identification of post-modification of PMOs.............36
Ⅲ. Pore structures of PMOs.................................38
Ⅳ. Detection of PMOs characteristics.......................39
Ⅴ. Identification of PMO-PpIX after grafting PpIX..........40
Ⅵ. Cell viability assays of PDT............................42
Ⅶ. Using LDH assay to detect cell viability and cell
membrane damage rate...................................43
Ⅷ. Using the Caspase-3 assay to confirm cell death
leading to an apoptosis pathway.......................44
Ⅸ. Antibacterial effect of PMO-PpIX in PDT................45
CHAPTER Ⅴ. CONCLUSIONS......................................47
CHAPTER Ⅵ. RESULTS OF FIGURES AND TABLES....................51
REFERENCES....................................................63
APPENDIX......................................................71
Ⅰ. Reagents and drugs.......................................71
Ⅱ. Plastic and glass device.................................73
Ⅲ. Instrument..............................................74
REFERENCES

1. Asefa T, MacLachlan MJ, Coombs N, Ozin GA. Periodic mesoporous
organosilicas with organic groups inside the channel walls.
Nature 1999, 402(6764): 867-871.
2. Brian JM, Brian TH, Christopher FB, Stein A. Mesoporous sieves
with unified hybrid inorganic/organic frameworks. Chemistry of
Materials 1999, 11(11): 3302-3308.
3. Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O. Novel
mesoporous materials with a uniform distribution of organic
groups and inorganic oxide in their frameworks. Journal of the
American Chemical Society 1999, 121(41): 9611-9614.
4. Corriu RJP. Ceramics and nanostructures from molecular
precursors. Angewandte Chemie International Edition 2000,
39(8): 1376-1398.
5. Mario B, Jürgen M, Piero S, Fröba M. Towards peptide formation
inside the channels of a new divinylaniline-bridged periodic
mesoporous organosilica. Chemical Communications 2010, 46(14):
2495-2497.
6. Shinji I, Shiyou G, Qihua Y, Mahendra PK, Shimada T. Direct
synthesis of porous organosilicas containing chiral organic
groups within their framework and a new analytical method for
enantiomeric purity of organosilicas. Chemical Communications
2008(2): 202-204.
7. Shea KJ, Loy DA. Bridged polysilsesquioxanes. Molecular-
engineered hybrid organic-inorganic materials. Chemistry of
Materials 2001, 13(10): 3306-3319.
8. Babak K, Dawood E, James HC, Hunt AJ. Ordered mesoporous
organosilica with ionic-liquid framework: an efficient and
reusable support for the palladium-catalyzed suzuki-miyaura
coupling reaction in water. Chemistry: A European Journal 2010,
16(27): 8047-8053.
9. Norihiro M, Takao T, Inagaki S. Syntheses, properties and
applications of periodic mesoporous organosilicas prepared from
bridged organosilane precursors. Chemical Society Reviews 2011,
40(2): 789-800.
10. IUPAC. Manual of symbols abd terminology, appendix 2, part I,
colloid and surface chemistry. Pure and Applied Chemistry
1972, 31: 578-638.
11. Liu J, Bai S, Zhong H, Li C, Yang Q. Tunable assembly of
organosilica hollow nanospheres. The Journal of Physical
Chemistry C 2010, 114(2): 953-961.
12. Jennifer EL, Ozin GA. Controlling morphology and porosity to
improve performance of molecularly imprinted sol-gel silica.
Chemical Society Reviews 2014, 43(3): 911-933.
13. Park SS, Ha CS. Organic–inorganic hybrid mesoporous silicas:
functionalization, pore size, and morphology control. The
Chemical Record 2006, 6(1): 32-42.
14. Pascal VDV, Dolores E, Els DC, Frederik G, Isabel VD, Salguero
FJR. Periodic mesoporous organosilicas: from simple to complex
bridges; a comprehensive overview of functions, morphologies
and applications. Chemical Society Reviews 2013, 42(9): 3913-
3955.
15. Sung SP, Madhappan SM, Ha CS. Periodic mesoporous
organosilicas for advanced applications. NPG Asia Materials
2014, 6(4): e96.
16. Jonas C, Xavier C, Michel WCM, Audrey G, Laurence R, Philippe
T, et al. Biodegradable ethylene-bis(propyl)disulfide-based
periodic mesoporous organosilica nanorods and nanospheres for
efficient in-vitro drug delivery. Advanced Materials 2014,
26(35): 6174-6180.
17. Dongdong L, Yuping Z, Zhiying F, Jie C, Yu J. Coupling of
chromophores with exactly opposite luminescence behaviours in
mesostructured organosilicas for high-efficiency multicolour
emission. Chemical Science 2015, 6(11): 6097-6101.
18. Xiaoyong Q, Shuhua H, Yongfeng H, Meng G, Wang H. Periodic
mesoporous organosilicas for ultra-high selective copper(II)
detection and sensing mechanism. Journal of Materials
Chemistry A 2014, 2(5): 1493-1501.
19. Meng G, Shuhua H, Yongfeng H, James JD, Xiangguo L, Wang D. A
pH-driven molecular shuttle based on rotaxane-bridged periodic
mesoporous organosilicas with responsive release of guests.
RSC Advances 2016, 6(33): 27922-27932.
20. Xiaoyong Q, Shuhua H, Yongfeng H, Sun B. Ratiometric
fluorescent nanosensors for copper(II) based on
bis(rhodamine)-derived PMOs with J-type aggregates. Chemistry:
A European Journal 2015, 21(10): 4126-4132.
21. Nan L, Ying T, Wei T, Peng H, Ying L, Yuxia T, et al. Smart
cancer cell targeting imaging and drug delivery system by
systematically engineering periodic mesoporous organosilica
nanoparticles. ACS Applied Materials & Interfaces 2016, 8(5):
2985-2993.
22. Gehring J, Schleheck D, Trepka B, Polarz S. Mesoporous
organosilica nanoparticles containing superacid and click
functionalities leading to cooperativity in biocidal coatings.
ACS Applied Materials & Interfaces 2015, 7(1): 1021-1029.
23. Wu HY, Chen CT, Hung IM, Liao CH, Vetrivel S, Kao HM. Direct
synthesis of cubic benzene-bridged mesoporous organosilica
functionalized with mercaptopropyl groups as an effective
adsorbent for mercury and silver ions. The Journal of Physical
Chemistry C 2010, 114(15): 7021-7029.
24. Gao M, Han S, Hu Y, Zhang L. Enhanced fluorescence in
tetraylnitrilomethylidyne-hexaphenyl derivative-functionalized
periodic mesoporous organosilicas for sensitive detection of
copper(II). The Journal of Physical Chemistry C 2016, 120(17):
9299-9307.
25. Hao N, Han L, Yang Y, Wang H, Webley PA, Zhao D. A metal-ion-
assisted assembly approach to synthesize disulfide-bridged
periodical mesoporous organosilicas with high sulfide contents
and efficient adsorption. Applied Surface Science 2010,
256(17): 5334-5342.
26. Liliana C, Ana RS, Mirtha AOL, Alvaro M, Isabel D, Ferreira P.
Chiral copper(II) bis(oxazoline) complexes directly
coordinated to amine-functionalized phenylene/biphenylene
periodic mesoporous organosilicas as heterogeneous catalysts.
European Journal of Inorganic Chemistry 2016(3):413-421.
27. Xiangju M, Toshiyuki Y, Daling L, Tatsumi T. Synthesis and
characterization of chiral periodic mesoporous organosilicas.
Angewandte Chemie International Edition 2007, 46(41): 7796-
7798.
28. Yang Q, Liu J, Yang J, Kapoor MP, Inagaki S, Li C. Synthesis,
characterization, and catalytic activity of sulfonic acid-
functionalized periodic mesoporous organosilicas. Journal of
Catalysis 2004, 228(2): 265-272.
29. Inagaki S, Ohtani O, Goto Y, Okamoto K, Ikai M, Yamanaka K, et
al. Light harvesting by a periodic mesoporous organosilica
chromophore. Angewandte Chemie International Edition 2009,
48(22): 4042-4046.
30. Hiroyuki T, Yasutomo G, Yoshifumi M, Tetsu O, Takao T,
Kazunori M, et al. Visible-light-harvesting periodic
mesoporous organosilica. Chemical Communications 2009(40):
6032-6034.
31. Grösch L, Lee YJ, Hoffmann F, Fröba M. Light-harvesting three-
chromophore systems based on biphenyl-bridged periodic
mesoporous organosilica. Chemistry – A European Journal 2015,
21(1): 331-346.
32. Ueda Y, Takeda H, Yui T, Koike K, Goto Y, Inagaki S, et al. A
visible-light harvesting system for CO2 reduction using a
RuII–ReI photocatalyst adsorbed in mesoporous organosilica.
ChemSusChem 2015, 8(3): 439-442.
33. Seino M, Wang W, Lofgreen JE, Puzzo DP, Manabe T, Ozin GA.
Low-k periodic mesoporous organosilica with air walls: POSS-
PMO. Journal of the American Chemical Society 2011, 133(45):
18082-18085.
34. Goethals F, Ciofi I, Madia O, Vanstreels K, Baklanov MR,
Detavernier C, et al. Ultra-low-k cyclic carbon-bridged PMO
films with a high chemical resistance. Journal of Materials
Chemistry 2012, 22(17): 8281-8286.
35. Redzheb M, Prager L, Naumov S, Krishtab M, Armini S, Voort
PVD, et al. Effect of the C-bridge length on the ultraviolet-
resistance of oxycarbosilane low-k films. Applied Physics
Letters 2016, 108(1): (012902) 012901-012905.
36. Du X, Li X, Xiong L, Zhang X, Kleitz F, Qiao SZ. Mesoporous
silica nanoparticles with organo-bridged silsesquioxane
framework as innovative platforms for bioimaging and
therapeutic agent delivery. Biomaterials 2016, 91: 90-127.
37. Croissant JG, Picard S, Aggad D, Klausen M, Jimenez CM,
Maynadier M, et al. Fluorescent periodic mesoporous
organosilica nanoparticles dual-functionalized via click
chemistry for two-photon photodynamic therapy in
cells. Journal of Materials Chemistry B 2016, 4(33): 5567-
5574.
38. Jimenez CM, Knezevic NZ, Rubio YG, Szunerits S, Boukherroub R,
Teodorescu F, et al. Nanodiamond-PMO for two-photon PDT and
drug delivery. Journal of Materials Chemistry B 2016, 4(35):
5803-5808.
39. Li X, Zhou L, Wei Y, Toni AME, Zhang F, Zhao D. Anisotropic
growth-induced synthesis of dual-compartment Janus mesoporous
silica nanoparticles for bimodal triggered drugs delivery.
Journal of the American Chemical Society 2014, 136(42): 15086-
15092.
40. Modak A, Barui AK, Patra CR, Bhaumik A. A luminescent
nanoporous hybrid material based drug delivery system showing
excellent theranostics potential for cancer. Chemical
Communications 2013, 49(69): 7644-7646.
41. Zhaogang T, Junjie Z, Wei L, Yuanyi Z, Xiaodan S, Yuxia T, et
al. Facile synthesis of yolk-shell-structured triple-
hybridized periodic mesoporous organosilica nanoparticles for
biomedicine. Small 2016, 12(26): 3550-3558.
42. Qian X, Wang W, Kong W, Chen Y. Hollow periodic mesoporous
organosilicas for highly efficient HIFU-based synergistic
therapy. RSC Advances 2014, 4(34): 17950-17958.
43. Canck ED, Ascoop I, Sayari A, Voort PVD. Periodic mesoporous
organosilicas functionalized with a wide variety of amines for
CO2 adsorption. Physical Chemistry Chemical Physics 2013,
15(24): 9792-9799.
44. Ganiyu SO, Bispo C, Bion N, Ferreira P, Batonneau GI. Periodic
mesoporous organosilicas as adsorbents for the organic
pollutants removal in aqueous phase. Microporous and
Mesoporous Materials 2014, 200: 117-123.
45. Lourenço MAO, Silva RM, Silva RF, Pinna N, Pronier S, Pires J,
et al. Turning periodic mesoporous organosilicas selective to
CO2/CH4 separation: deposition of aluminium oxide by atomic
layer deposition. Journal of Materials Chemistry A 2015,
3(45): 22860-22867.
46. Mustafa I, Damián PQ, Sierra I. Bifunctional periodic
mesoporous organosilicas with sulfide bridges as effective
sorbents for Hg (II) extraction from environmental and
drinking waters. Microporous and Mesoporous Materials 2016,
229: 90-97.
47. Antoniou MK, Policicchio A, Dimos K, Gournis D, Karakassides
MA, Agostino RG. Naphthalene-based periodic nanoporous
organosilicas: II. Hydrogen and methane adsorption and
physicochemical study. Microporous and Mesoporous Materials
2012, 158: 332-338.
48. Chandra D, Das SK, Bhaumik A. A fluorophore grafted 2D-
hexagonal mesoporous organosilica: excellent ion-exchanger for
the removal of heavy metal ions from wastewater. Microporous
and Mesoporous Materials 2010, 128(1–3): 34-40.
49. Johnson BJ, Anderson NE, Charles PT, Malanoski AP, Melde BJ,
Nasir M, et al. Porphyrin-embedded silicate materials for
detection of hydrocarbon solvents. Sensors 2011, 11(1): 886-
904.
50. Johnson BJ, Melde BJ, Peterson GW, Schindler BJ, Jones P.
Functionalized organosilicate materials for irritant gas
removal. Chemical Engineering Science 2012, 68(1): 376-382.
51. Borah P, Zhao Y. β-Diketimine appended periodic mesoporous
organosilica as a scaffold for immobilization of palladium
acetate: an efficient green catalyst for wacker type reaction.
Journal of Catalysis 2014, 318: 43-52.
52. Elhamifar D, Karimi B, Moradi A, Rastegar J. Synthesis of
sulfonic acid containing ionic-liquid-based periodic
mesoporous organosilica and study of its catalytic performance
in the esterification of carboxylic acids. ChemPlusChem 2014,
79(8): 1147-1152.
53. Elhamifar D, Esfahani MN, Karimi B, Moshkelgosha R, Shábani A.
Ionic liquid and sulfonic acid based bifunctional periodic
mesoporous organosilica (BPMO–IL–SO3H) as a highly efficient
and reusable nanocatalyst for the biginelli reaction.
ChemCatChem 2014, 6(9): 2593-2599.
54. Wang J, Zou Y, Sun Y, Hemgesberg M, Schaffner D, Gao H, et al.
Electrostatic immobilization of phosphomolybdic acid on
imidazolium-based mesoporous organosilicas for catalytic
olefin epoxidation. Chinese Journal of Catalysis 2014, 35(4):
532-539.
55. Lazar A, George SC, Jithesh PR, Vinod CP, Singh AP.
Correlating the role of hydrophilic/hydrophobic nature of
Rh(I) and Ru(II) supported organosilica/silica catalysts in
organotransformation reactions. Applied Catalysis A: General
2016, 513: 138-146.
56. Kriegmair M, Baumgartner R, Lumper W, Waidelich R, Hofstetter
A. Early clinical experience with 5-aminolevulinic acid for
the photodynamic therapy of superficial bladder cancer.
British Journal of Urology 1996, 77(5): 667-671.
57. Kennedy JC, Pottier RH. Endogenous protoporphyrin IX, a
clinically useful photosensitizer for photodynamic therapy.
Journal of Photochemistry and Photobiology B: Biology 1992,
14(4): 275-292.
58. Abels C, Heil P, Dellian M, Kuhnle GEH, Baumgartner R, Goetz
AE. In vivo kinetics and spectra of 5-aminolaevulinic acid-
induced fluorescence in an amelanotic melanoma of the hamster.
British Journal of Cancer 1994, 70(5): 826-833.
59. Pahernik S, Langer S, Botzlar A, Dellian M, Goetz AE. Tissue
distribution and penetration of 5-ALA induced fluorescence in
an amelanotic melanoma after topical application. Anticancer
Research 2001, 21(1a): 59-63.
60. Ito S, Mitarai A, Hikino K, Hirama M, Sasaki K. Deactivation
reaction in the hydroxylation of benzene with Fenton's
reagent. The Journal of Organic Chemistry 1992, 57(25): 6937-
6941.
61. Sedlak DL, Andren AW. Oxidation of chlorobenzene with Fenton's
reagent. Environmental Science & Technology 1991, 25(4): 777-
782.
62. Tu HL, Lin YS, Lin HY, Hung Y, Lo LW, Chen YF, et al. In vitro
studies of functionalized mesoporous silica nanoparticles for
photodynamic therapy. Advanced Materials 2009, 21(2): 172-177.
63. www.cc.ntut.edu.tw/~wwwemo/instrument_manual/FTIR.html.
國立台北科技大學 奈米光電磁材料技術研發中心 - FTIR光譜分析檢測.
64. Coates J. Interpretation of infrared spectra, a practical
approach. Encyclopedia of Analytical Chemistry 2000. pp.
10815-10837.
65. Stephen B, Paul HE, Teller E. Adsorption of gases in
multimolecular layers. Journal of the American Chemical
Society 1938, 60(2): 309-319.
66. Elliott PB, Leslie GJ, Halenda PP. The determination of pore
volume and area distributions in porous substances. I.
Computations from nitrogen isotherms. Journal of the American
Chemical Society 1951, 73(1): 373-380.
67. ibenservice.nhri.org.tw/?page_id=429.
國家衛生研究院 生醫工程與奈米醫學研究所 - DLS & zeta potential.
68. Alice S, David E, Liqing R, Li D. Zeta-potential measurement
using the Smoluchowski equation and the slope of the current-
time relationship in electroosmotic flow. Journal of Colloid
and Interface Science 2003, 261(2): 402-410.
69. https://en.wikipedia.org/wiki/Ultraviolet%E2%80%93
visible_spectroscopy. (Wikipedia) Ultraviolet - visible
spectroscopy.
70. Soares MDV, Oliveira MR, Santos EPD, Gitirana LDB, Barbosa GM,
Quaresma CH, et al. Nanostructured delivery system for zinc
phthalocyanine: preparation, characterization, and
phototoxicity study against human lung adenocarcinoma A549
cells. International Journal of Nanomedicine 2011, 6: 227-238.
71. Lai LH, Fu QH, Liu Y, Jiang K, Guo QM, Chen QY, et al.
Piperine suppresses tumor growth and metastasis in vitro and
in vivo in a 4T1 murine breast cancer model. Acta
Pharmacologica Sinica 2012, 33(4): 523-530.
72. www.thermofisher.com/order/catalog/product/88953.
Pierce™ LDH cytotoxicity assay kit.
73. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis:
mechanistic description of dead and dying eukaryotic cells.
Infection and Immunity 2005, 73(4): 1907-1916.
74. www.sigmaaldrich.com/catalog/product/sigma/casp3c?
lang=en®ion=TW. Caspase 3 assay kit, colorimetric.
75. Kharkwal GB, Sharma SK, Huang YY, Dai T, Hamblin MR.
Photodynamic therapy for infections: clinical applications.
Lasers in Surgery and Medicine 2011, 43(7): 755-767.
76. Maisch T. A new strategy to destroy antibiotic resistant
microorganisms: antimicrobial photodynamic treatment. Mini
Reviews in Medicinal Chemistry 2009, 9(8): 974-983.
77. Malik Z, Ladan H, Nitzan Y. Photodynamic inactivation of gram-
negative bacteria: problems and possible solutions. Journal of
Photochemistry and Photobiology B: Biology 1992, 14(3): 262-
266.
78. Yeshayahu N, Mina G, Zvi M, Ehrenberg B. Inactivation of gram-
negative bacteria by photosensitized porphyrins.
Photochemistry and Photobiology 1992, 55(1): 89-96.
79. Valduga G, Bertoloni G, Reddi E, Jori G. Effect of
extracellularly generated singlet oxygen on gram-positive and
gram-negative bacteria. Journal of Photochemistry and
Photobiology B: Biology 1993, 21(1): 81-86.
80. Soncin M, Fabris C, Busetti A, Dei D, Nistri D, Roncucci G, et
al. Approaches to selectivity in the Zn(II)-phthalocyanine-
photosensitized inactivation of wild-type and antibiotic-
resistant Staphylococcus aureus. Photochemical &
Photobiological Sciences 2002, 1(10): 815-819.
81. Schastak S, Ziganshyna S, Gitter B, Wiedemann P, Claudepierre
T. Efficient photodynamic therapy against gram-positive and
gram-negative bacteria using THPTS, a cationic photosensitizer
excited by infrared wavelength. PLOS ONE 2010, 5(7): e11674.
82. zh.biology.wikia.com/wiki/%E6%B7%B7%E6%BF%81%E5%BA%A6%E5
%92%8C%E6%B4%BB%E8%8F%8C%E6%95%B8%E7%9A%84%E9%97
%9C%E4%BF%82?variant=zh-tw.
Wikia 生物學-混濁度和活菌數的關係.
83. Hoffmann F, Cornelius M, Morell J, Fröba M. Periodic
mesoporous organosilicas (PMOs): past, present, and future.
Journal of Nanoscience and Nanotechnology 2006, 6(2): 265-288.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top