跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 02:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏珮如
研究生(外文):Pei-Ru Wei
論文名稱:層狀氫氧化物奈米粒子於活體追蹤與癌症治療之應用
論文名稱(外文):Layered Double Hydroxide Nanoparticles for In Vivo Optical Imaging and Cancer Therapy
指導教授:李佳洪
指導教授(外文):Chia-Hung Lee
學位類別:博士
校院名稱:國立東華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:122
中文關鍵詞:層狀氫氧化物影像光化學動力療法
外文關鍵詞:layered double hydroxideindocyanine greenimagePhotodynamic therapyICGLDHPDT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本實驗結合近紅外光 (NIR) 螢光染料,indocyanine green (ICG),為一種光敏劑,目前作為體內光學影像近紅外光 (NIR) 造影劑,利用靜電吸引力吸附在由胺根修飾的layered double hydroxide nanoparticles (LDHs)上形成LDHs-ICG,進一步在LDHs-ICG的外層以幾丁聚醣(chitosan)包覆,透過glutaraldehyde (GA)當交聯劑,交叉聯接修飾胺根的LDHs和不同層的幾丁聚醣(chitosan)。這種有機-無機雜合的奈米複合材料使得近紅外光 (NIR) 造影劑有較高的效率,因為LDHs層狀結構可以穩定吸收indocyanine green (ICG),防止在各種生理條件下分離或代謝。而光敏劑除了作為造影劑,也可應用在光化學動力療法(Photodynamic therapy , PDT),PDT是利用光敏藥物選擇累積在特定疾病組織的特性,用特定波長的光應用在受影響的區域。實驗結果顯示,經由Chitosan包覆不僅可以防止ICG掉落,以LDHs當載體也可提高對光的穩定性。而由細胞實驗和溶血試驗顯示其有低毒性和低釋放血紅蛋白量。在生物體內分佈方面,LDHs包覆不同層的幾丁聚醣(chitosan)不僅使藥物釋放到特定的器官,也可有效的累積在不同的標的器官。未包覆的LDHs-ICG是累積在肝臟和脾臟;包覆一層的LDHs-ICG累積在肺;包覆兩層的LDHs-ICG則累積在肝臟和肺部。在光化學動力療法(Photodynamic therapy , PDT)方面,經光照射之後,細胞存活率有下降的趨勢。以2’, 7’- Dichlorodihydrofluorescin diacetate (DCFH-DA)染劑來偵測ROS,結果顯示螢光強度明顯增強,表示LDH-ICG-CS會產生ROS導致細胞凋亡。除了利用幾丁聚醣(chitosan)包覆LDHs-ICG可開發高潛能的體內成像造影劑,也可控制治療藥物準確送達目標器官。因此,藉由這樣的實驗設計,我們希望可以改善傳統的癌症診斷和癌症化療的效率。
We incorporated a near-infrared (NIR) fluorescent dye, indocyanine green (ICG), in amine-modified layered double hydroxide nanoparticles (LDHs) by electrostatic attractions to render LDHs–ICG as an efficient NIR contrast agent for in vivo optical imaging. The further coating of chitosan on the external surfaces of LDHs–ICG was achieved through the cross-linking of amine-modified LDHs and different amounts of chitosan by using glutaraldehyde (GA) as a cross-linked agent. The hybridization of this organic–inorganic nanocomposite produced an efficient NIR optical contrast agent because the adsorbed ICG molecules were stabilized in the layered structures of LDHs to prevent them from leaching and/or metabolizing in the physiological conditions. By this approach, the encapsulation of the photosensitizer in the chitosan-coated LDHs for PDT (Photodynamic therapy) can selectively accumulate on diseased tissues with a light specific wavelength then applied to the affected area for the production of Reactive Oxygen Species (ROS). The cell viability and hemolysis assay also showed low cytotoxicity and low release of hemoglobin from the cell lysis of red blood cells (RBCs). The in vivo bio-distribution results demonstrated that the coating of LDHs with different amounts of chitosan can develop organ-specific drug delivery systems, which can efficiently regulate the nanoparticle accumulation in various organs with un-coated LDHs–ICG targeting the liver and spleen, mono-chitosan-coated LDHs–ICG targeting the lungs, double chitosan-coated LDHs–ICG targeting the lungs and liver, and trimethylammonium (TA) modified double chitosan-coated LDHs–ICG samples targeting the liver. When the colon cancer cells (HT-29) were treated with chitosan-coated LDHs-ICG and then irradiated with near-infrared laser (800 nm), the cell viability showed a large decrease. We also used 2 ',7'- Dichlorodihydrofluorescin diacetate (DCFH - DA) to detect the ROS, with our results showing that the fluorescent intensity was significantly enhanced, indicating that the chitosan-coated LDHs- ICG samples led to apoptosis through the production of intracellular ROS. In addition to the high potential for the employment of chitosan-coated LDHs–ICG samples for developing contrast agents for in vivo imaging, the LDH nanoparticles can deliver therapeutic drugs to the desired target organs by controlling the coating amounts of chitosan. Therefore, this approach can improve efficiency for traditional cancer diagnosis and cancer chemotherapy.
中文摘要 ..................................................... Ⅰ
Abstract ................................ ................... Ⅲ
Table of Contents ........................................... Ⅵ
1. Background ............................................... 1
1.1 Layered double hydroxides (LDHs)......................... 1
1.2 Drug delivery systems (DDS) of Nanoparticles ............ 4
1.3 Photodynamic therapy (PDT) .............................. 6
1.4 Nanoparticles in photodynamic therapy ................... 8
2. Introduction ............................................. 11
3. Experimental Section ..................................... 19
Section Ⅰ .....................................................19
3.1 Materials ............................................... 19
3.2 Preparation ............................................. 19
3.3 Leaching test ........................................... 22
3.4 Biodistribution studies ................................. 22
3.5 Cytotoxicity assay ...................................... 23
3.6 Cell viability assay .................................... 23
3.7 Hemolysis assay ......................................... 23
3.8 Instrumentation and measurements......................... 24
SectionⅡ..................................................... 26
3.1 Materials ............................................... 26
3.2 Characterization and Instruments ........................ 26
3.3 Synthesis of LDH Nanoparticles .......................... 27
3.4 Synthesis of LDHs–NH2 ................................... 27
3.5 Synthesis of LDHs–NH2–ICG ............................... 28
3.6 Synthesis of Chitosan-Coated LDHs–NH2–ICG ............... 28
3.7 Synthesis of LDH–NH2–FITC–CS ............................ 29
3.8 Photostability Assay .................................... 29
3.9 Cellular Uptake and Imaging by Confocal Microscopy ...... 30
3.10 Lysosome Staining ...................................... 30
3.11 In Vitro Determination of Singlet Oxygen Production by 1,3-Diphenylisobenzofuran (DPBF) ................................ 30
3.12 Photodynamic Effect Measurement......................... 31
3.13 Measurements of the Mitochondrial Membrane Potential.... 31
3.14 Comet Assay ............................................ 32
3.15 Flow Cytometric Detections ............................. 32
3.16 Lactate Dehydrogenase Assay ............................ 33
4. Results and discussion ................................... 35
Section Ⅰ .................................................... 35
4.1 Material characterization ............................... 35
4.2 Stability studies ....................................... 43
4.3 Biodistribution studies ................................. 44
4.4 Cytotoxicity assay ...................................... 46
4.5 Hemolysis assay ......................................... 47
Section Ⅱ ................................................... 49
4.1 Physical Characterization of Chitosan-Coated Layered Double Hydroxide (LDH)–NH2–Indocyanine Green(ICG) Matrix............ 49
4.2 Photostability of ICG in LDH–Chitosan Matrix ............ 51
4.3 Cell Uptake and in Vitro Cell Imaging ................... 52
4.4 Determination of Singlet Oxygen Generation .............. 54
4.5 Phototherapy Assay ...................................... 55
4.6 Apoptosis................................................ 55
5. Conclusions .............................................. 61
6. Figures and Tables ....................................... 63
7. Reference ................................................ 97
Reference

1.Choy, J.-H. Intercalative route to heterostructured nanohybrid. Journal of Physics and Chemistry of Solids 2004, 65, 373-383.
2.Paek, S. M.; Oh, J. M.; Choy, J. H. A Lattice‐Engineering Route to Heterostructured Functional Nanohybrids. Chemistry–An Asian Journal 2011, 6, 324-338.
3.Park, D.-H.; Hwang, S.-J.; Oh, J.-M.; Yang, J.-H.; Choy, J.-H. Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Progress in Polymer Science 2013, 38, 1442-1486.
4.Park, D.-H.; Choi, G.; Choy, J.-H. Bio-layered double hydroxides nanohybrids for theranostics applications. In Photofunctional Layered Materials; Springer 2015, 137-175.
5.Chung, H.-E.; Park, D.-H.; Choy, J.-H.; Choi, S.-J. Intracellular trafficking pathway of layered double hydroxide nanoparticles in human cells: size-dependent cellular delivery. Applied Clay Science 2012, 65, 24-30.
6.Ruiz-Hitzky, E.; Aranda, P.; Darder, M.; Rytwo, G. Hybrid materials based on clays for environmental and biomedical applications. Journal of Materials Chemistry 2010, 20, 9306-9321.
7.Hussein, M. Z.; Nasir, N. M.; Yahaya, A. H. Controlled release compound based on metanilate-layered double hydroxide nanohybrid. Journal of nanoscience and nanotechnology 2008, 8, 5921-5928.
8.Choi, O.; Kim, T.; Woo, H. M.; Um, Y. Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridiumpasteurianum. Scientific reports 2014, 4, 6961.
9.Khan, A. I.; Lei, L.; Norquist, A. J.; O’Hare, D. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide. Chemical Communications 2001, 2342-2343.
10.Choi, S.-J.; Oh, J.-M.; Chung, H.-E.; Hong, S.-H.; Kim, I.-H.; Choy, J.-H. In vivo anticancer activity of methotrexate-loaded layered double hydroxide nanoparticles. Current pharmaceutical design 2013, 19, 7196-7202.
11.Yan, M.; Zhang, Z.; Cui, S.; Lei, M.; Zeng, K.; Liao, Y.; Chu, W.; Deng, Y.; Zhao, C. Improvement of pharmacokinetic and antitumor activity of layered double hydroxide nanoparticles by coating with PEGylated phospholipid membrane. Int. J. Nanomed. 2014, 9, 4867-4878.
12.Oh, J. M.; Choi, S. J.; Lee, G. E.; Han, S. H.; Choy, J. H. Inorganic Drug‐Delivery Nanovehicle Conjugated with Cancer‐Cell‐Specific Ligand. Advanced Functional Materials 2009, 19, 1617-1624.
13.Oh, J. M.; Choi, S. J.; Lee, G. E.; Kim, J. E.; Choy, J. H. Inorganic Metal Hydroxide Nanoparticles for Targeted Cellular Uptake Through Clathrin‐Mediated Endocytosis. Chemistry–An Asian Journal 2009, 4, 67-73.
14.Oh, J.-M.; Choi, S.-J.; Kim, S.-T.; Choy, J.-H. Cellular Uptake Mechanism of an Inorganic Nanovehicle and Its Drug Conjugates:  Enhanced Efficacy Due To Clathrin-Mediated Endocytosis. Bioconjugate Chemistry 2006, 17, 1411-1417.
15.Chen, C.; Yee, L. K.; Gong, H.; Zhang, Y.; Xu, R. A facile synthesis of strong near infrared fluorescent layered double hydroxide nanovehicles with an anticancer drug for tumor optical imaging and therapy. Nanoscale 2013, 5, 4314-4320.
16.Rives, V.; Del Arco, M.; Martín, C. Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiinflammatory drugs (NSAIDs): a review. Journal of Controlled Release 2013, 169, 28-39.
17.Bi, X.; Zhang, H.; Dou, L. Layered double hydroxide-based nanocarriers for drug delivery. Pharmaceutics 2014, 6, 298-332.
18.Li, D.; Zhang, Y.-T.; Yu, M.; Guo, J.; Chaudhary, D.; Wang, C.-C. Cancer therapy and fluorescence imaging using the active release of doxorubicin from MSPs/Ni-LDH folate targeting nanoparticles. Biomaterials 2013, 34, 7913-7922.
19.Ross, J. S.; Schenkein, D. P.; Pietrusko, R.; Rolfe, M.; Linette, G. P.; Stec, J.; Stagliano, N. E.; Ginsburg, G. S.; Symmans, W. F.; Pusztai, L. Targeted therapies for cancer 2004. American journal of clinical pathology 2004, 122, 598-609.
20.Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation 2001, 41, 189-207.
21.Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nature Reviews Cancer 2002, 2, 750-763.
22.Cho, K.; Wang, X.; Nie, S.; Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research 2008, 14, 1310-1316.
23.Carmeliet, P.; Jain, R. K., Angiogenesis in cancer and other diseases. nature 2000, 407, 249-257.
24.Byrne, J. D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced drug delivery reviews 2008, 60, 1615-1626.
25.Hatakeyama, H.; Akita, H.; Ishida, E.; Hashimoto, K.; Kobayashi, H.; Aoki, T.; Yasuda, J.; Obata, K.; Kikuchi, H.; Ishida, T.; Kiwada, H.; Harashima, H. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. International Journal of Pharmaceutics 2007, 342, 194-200.
26.Kirpotin, D. B.; Drummond, D. C.; Shao, Y.; Shalaby, M. R.; Hong, K.; Nielsen, U. B.; Marks, J. D.; Benz, C. C.; Park, J. W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer research 2006, 66, 6732-6740.
27.Atobe, K.; Ishida, T.; Ishida, E.; Hashimoto, K.; Kobayashi, H.; Yasuda, J.; Aoki, T.; Obata, K.-i.; Kikuchi, H.; Akita, H. In vitro efficacy of a sterically stabilized immunoliposomes targeted to membrane type 1 matrix metalloproteinase (MT1-MMP). Biological and Pharmaceutical Bulletin 2007, 30, 972-978.
28.Triesscheijn, M.; Baas, P.; Schellens, J. H.; Stewart, F. A. Photodynamic therapy in oncology. The oncologist 2006, 11, 1034-1044.
29.Bechet, D.; Couleaud, P.; Frochot, C.; Viriot, M.-L.; Guillemin, F.; Barberi-Heyob, M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends in biotechnology 2008, 26, 612-621.
30.Robertson, C. A.; Evans, D. H.; Abrahamse, H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. Journal of Photochemistry and Photobiology B: Biology 2009, 96, 1-8.
31.Dolmans, D. E.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nature reviews cancer 2003, 3, 380-387.
32.陳進庭; 林郁欣. 光動力醫學的原理及其應用的發展. 光連: 光電產業與技術情報 2006, 19-23.
33.Huang, Z. A review of progress in clinical photodynamic therapy. Technology in cancer research & treatment 2005, 4, 283-293.
34.Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chemical reviews 2015, 115, 1990-2042.
35.Davis, M. E.; Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature reviews Drug discovery 2008, 7, 771-782.
36.Master, A.; Livingston, M.; Gupta, A. S. Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges. Journal of Controlled Release 2013, 168, 88-102.
37.Allison, R. R.; Bagnato, V. S.; Sibata, C. H. Future of oncologic photodynamic therapy. Future Oncology 2010, 6, 929-940.
38.Konan, Y. N.; Gurny, R.; Allémann, E. State of the art in the delivery of photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology 2002, 66, 89-106.
39.Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacological Research 2010, 62, 90-99.
40.Nie, Z. H.; Petukhova, A.; Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotechnology 2010, 5, 15-25.
41.Oh, J. M.; Biswick, T. T.; Choy, J. H. Layered nanomaterials for green materials. J. Mater. Chem. 2009, 19, 2553-2563.
42.Reddy, M. K. R.; Xu, Z. P.; Lu, G. Q.; da Costa, J. C. D. Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives. Industrial & Engineering Chemistry Research 2008, 47, 2630-2635.
43.Khan, A. I.; Ragavan, A.; Fong, B.; Markland, C.; O'Brien, M.; Dunbar, T. G.; Williams, G. R.; O'Hare, D. Recent Developments in the Use of Layered Double Hydroxides as Host Materials for the Storage and Triggered Release of Functional Anions. Industrial & Engineering Chemistry Research 2009, 48, 10196-10205.
44.Cunha, V. R. R.; Ferreira, A. M. D.; Constantino, V. R. L.; Tronto, J.; Valim, J. B. Layered Double Hydroxides : Inorganic Nanoparticles for Storage and Release of Species of Biological and Therapeutic Interest. Quimica Nova 2010, 33, 159-171.
45.Xing, Z. C.; Chang, Y. M.; Kang, I. K. Immobilization of biomolecules on the surface of inorganic nanoparticles for biomedical applications. Science and Technology of Advanced Materials 2010, 11.
46.Shao, M. F.; Han, J. B.; Wei, M.; Evans, D. G.; Duan, X. The synthesis of hierarchical Zn-Ti layered double hydroxide for efficient visible-light photocatalysis. Chemical Engineering Journal 2011, 168, 519-524.
47.Musumeci, A. W.; Mortimer, G. M.; Butler, M. K.; Xu, Z. P.; Minchin, R. F.; Martin, D. J. Fluorescent layered double hydroxide nanoparticles for biological studies. Applied Clay Science 2010, 48, 271-279.
48.Kim, S. Y.; Oh, J. M.; Lee, J. S.; Kim, T. J.; Choy, J. H. Gadolinium (III) Diethylenetriamine Pentaacetic Acid/Layered Double Hydroxide Nanohybrid as Novel T(1)-Magnetic Resonant Nanoparticles. Journal of Nanoscience and Nanotechnology 2008, 8, 5181-5184.
49.Xu, Z. P.; Kurniawan, N. D.; Bartlett, P. F.; Lu, G. Q. Enhancement of relaxivity rates of Gd–DTPA complexes by intercalation into layered double hydroxide nanoparticles. Chemistry-A European Journal 2007, 13, 2824-2830.
50.Park, M.; Lee, C. I.; Seo, Y. J.; Woo, S. R.; Shin, D.; Choi, J. Hybridization of the natural antibiotic, cinnamic acid, with layered double hydroxides (LDH) as green pesticide. Environmental Science and Pollution Research 2010, 17, 203-209.
51.Del Hoyo, C. Layered double hydroxides and human health: An overview. Applied Clay Science 2007, 36, 103-121.
52.Kwak, S. Y.; Kriven, W. M.; Wallig, M. A.; Choy, J. H. Inorganic delivery vector for intravenous injection. Biomaterials 2004, 25, 5995-6001.
53.Yang, J. H.; Han, Y. S.; Park, M.; Park, T.; Hwang, S. J.; Choy, J. H. New inorganic-based drug delivery system of indole-3-acetic acid-layered metal hydroxide nanohybrids with controlled release rate. Chemistry of Materials 2007, 19, 2679-2685.
54.Del Arco, M.; Fernandez, A.; Martin, C.; Sayalero, M. L.; Rives, V. Solubility and release of fenamates intercalated in layered double hydroxides. Clay Minerals 2008, 43, 255-265.
55.Liu, C. X.; Hou, W. G.; Li, L. F.; Li, Y.; Liu, S. J. Synthesis and characterization of 5-fluorocytosine intercalated Zn-Al layered double hydroxide. Journal of Solid State Chemistry 2008, 181, 1792-1797.
56.Qin, L. L.; Xue, M.; Wang, W. R.; Zhu, R. R.; Wang, S. L.; Sun, J.; Zhang, R.; Sun, X. Y. The in vitro and in vivo anti-tumor effect of layered double hydroxides nanoparticles as delivery for podophyllotoxin. International Journal of Pharmaceutics 2010, 388, 223-230.
57.Huang, W.; Zhang, H.; Pan, D. K. Study on the Release Behavior and Mechanism by Monitoring the Morphology Changes of the Large-Sized Drug-LDH Nanohybrids. Aiche Journal 2011, 57, 1936-1946.
58.Tyner, K. M.; Schiffman, S. R.; Giannelis, E. P. Nanobiohybrids as delivery vehicles for camptothecin. Journal of Controlled Release 2004, 95, 501-514.
59.Dagnon, K. L.; Ambadapadi, S.; Shaito, A.; Ogbomo, S. M.; DeLeon, V.; Golden, T. D.; Rahimi, M.; Nguyen, K.; Braterman, P. S.; D'Souza, N. A. Poly(L-lactic acid) Nanocomposites with Layered Double Hydroxides Functionalized with Ibuprofen. Journal of Applied Polymer Science 2009, 113, 1905-1915.
60.Parello, M. L.; Rojas, R.; Giacomelli, C. E. Dissolution kinetics and mechanism of Mg-Al layered double hydroxides: A simple approach to describe drug release in acid media. Journal of Colloid and Interface Science 2010, 351, 134-139.
61.Gu, Z.; Rolfe, B. E.; Xu, Z. P.; Thomas, A. C.; Campbell, J. H.; Lu, G. Q. M. Enhanced effects of low molecular weight heparin intercalated with layered double hydroxide nanoparticles on rat vascular smooth muscle cells. Biomaterials 2010, 31, 5455-5462.
62.Oh, J. M.; Choi, S. J.; Lee, G. E.; Han, S. H.; Choy, J. H. Inorganic Drug-Delivery Nanovehicle Conjugated with Cancer-Cell-Specific Ligand. Advanced Functional Materials 2009, 19, 1617-1624.
63.Li, Y.; Liu, D.; Ai, H. H.; Chang, Q.; Liu, D. D.; Xia, Y.; Liu, S. W.; Peng, N. F.; Xi, Z. G.; Yang, X. Biological evaluation of layered double hydroxides as efficient drug vehicles. Nanotechnology 2010, 21.
64.Xu, Z. P.; Stevenson, G. S.; Lu, C. Q.; Lu, G. Q. M.; Bartlett, P. F.; Gray, P. P. Stable suspension of layered double hydroxide nanoparticles in aqueous solution. Journal of the American Chemical Society 2006, 128, 36-37.
65.Desigaux, L.; Ben Belkacem, M.; Richard, P.; Cellier, J.; Leone, P.; Cario, L.; Leroux, F.; Taviot-Gueho, C.; Pitard, B. Self-assembly and characterization of layered double hydroxide/DNA hybrids. Nano Letters 2006, 6, 199-204.
66.Tyner, K. M.; Roberson, M. S.; Berghorn, K. A.; Li, L.; Gilmour, R. F.; Batt, C. A.; Giannelis, E. P. Intercalation, delivery, and expression of the gene encoding green fluorescence protein utilizing nanobiohybrids. Journal of Controlled Release 2004, 100, 399-409.
67.Xu, Z. P.; Niebert, M.; Porazik, K.; Walker, T. L.; Cooper, H. M.; Middelberg, A. P. J.; Gray, P. P.; Bartlett, P. F.; Lu, G. Q. Subcellular compartment targeting of layered double hydroxide nanoparticles. Journal of Controlled Release 2008, 130, 86-94.
68.Oh, J. M.; Choi, S. J.; Kim, S. T.; Choy, J. H. Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: Enhanced efficacy due to clathrin-mediated endocytosis. Bioconjugate Chemistry 2006, 17, 1411-1417.
69.Ryu, S. J.; Jung, H.; Oh, J. M.; Lee, J. K.; Choy, J. H. Layered double hydroxide as novel antibacterial drug delivery system. Journal of Physics and Chemistry of Solids 2010, 71, 685-688.
70.Choy, J. H.; Jung, J. S.; Oh, J. M.; Park, M.; Jeong, J.; Kang, Y. K.; Han, O. J. Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials 2004, 25, 3059-3064.
71.Chakraborty, M.; Bose, P.; Mandal, T.; Datta, B.; Das, T.; Pal, S.; Chakraborty, J.; Mitra, M.; Basu, D. Effect of Process Variations on Anticancerous Drug Intercalation in Ceramic Based Delivery System. Transactions of the Indian Ceramic Society 2010, 69, 229-234.
72.Choi, S. J.; Choi, G. E.; Oh, J. M.; Oh, Y. J.; Park, M. C.; Choy, J. H. Anticancer drug encapsulated in inorganic lattice can overcome drug resistance. J. Mater. Chem. 2010, 20, 9463-9469.
73.Oh, J. M.; Park, C. B.; Choy, J. H. Intracellular Drug Delivery of Layered Double Hydroxide Nanoparticles. Journal of Nanoscience and Nanotechnology 2011, 11, 1632-1635.
74.Carja, G.; Chiriac, H.; Lupu, N. New magnetic organic-inorganic composites based on hydrotalcite-like anionic clays for drug delivery. Journal of Magnetism and Magnetic Materials 2007, 311, 26-30.
75.Ay, A. N.; Zumreoglu-Karan, B.; Temel, A.; Rives, V. Bioinorganic Magnetic Core-Shell Nanocomposites Carrying Antiarthritic Agents: Intercalation of Ibuprofen and Glucuronic Acid into Mg-Al-Layered Double Hydroxides Supported on Magnesium Ferrite. Inorganic Chemistry 2009, 48, 8871-8877.
76.Pan, D. K.; Zhang, H.; Fan, T.; Chen, J. G.; Duan, X. Nearly monodispersed core-shell structural Fe3O4@DFUR-LDH submicro particles for magnetically controlled drug delivery and release. Chemical Communications 2011, 47, 908-910.
77.Li, L.; Feng, Y. J.; Li, Y. S.; Zhao, W. R.; Shi, J. L. Fe3O4 Core/Layered Double Hydroxide Shell Nanocomposite: Versatile Magnetic Matrix for Anionic Functional Materials. Angewandte Chemie-International Edition 2009, 48, 5888-5892.
78.Zhang, H.; Pan, D. K.; Zou, K.; He, J.; Duan, X. A novel core-shell structured magnetic organic-inorganic nanohybrid involving drug-intercalated layered double hydroxides coated on a magnesium ferrite core for magnetically controlled drug release. J. Mater. Chem. 2009, 19, 3069-3077.
79.Wang, J.; Zhou, J. D.; Li, Z. S.; Song, Y. C.; Liu, Q.; Jiang, Z. H.; Zhang, M. L., Magnetic, Luminescent Eu-Doped Mg-Al Layered Double Hydroxide and Its Intercalation for Ibuprofen. Chemistry-a European Journal 2010, 16, 14404-14411.
80.Wang, J.; Liu, Q.; Zhang, G. C.; Li, Z. S.; Yang, P. P.; Jing, X. Y.; Zhang, M. L.; Liu, T. F.; Jiang, Z. H. Synthesis, sustained release properties of magnetically functionalized organic-inorganic materials: Amoxicillin anions intercalated magnetic layered double hydroxides via calcined precursors at room temperature. Solid State Sciences 2009, 11, 1597-1601.
81.Wang, Z. L.; Wang, E. B.; Gao, L.; Xu, L. Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil. Journal of Solid State Chemistry 2005, 178, 736-741.
82.Jin, L.; Liu, Q.; Sun, Z. Y.; Ni, X. Y.; Wei, M. Preparation of 5-Fluorouracil/beta-Cyclodextrin Complex Intercalated in Layered Double Hydroxide and the Controlled Drug Release Properties. Industrial & Engineering Chemistry Research 2010, 49, 11176-11181.
83.Hussein, M. Z.; Nasir, N. M.; Yahaya, A. H. J. Controlled Release Compound Based on Metanilate-Layered Double Hydroxide Nanohybrid. Journal of Nanoscience and Nanotechnology 2008, 8, 5921-5928.
84.Pan, D. K.; Zhang, H.; Zhang, T.; Duan, X. A novel organic-inorganic microhybrids containing anticancer agent doxifluridine and layered double hydroxides: Structure and controlled release properties. Chemical Engineering Science 2010, 65, 3762-3771.
85.Choi, S. J.; Oh, J. M.; Choy, J. H. Safety Aspect of Inorganic Layered Nanoparticles: Size-Dependency In Vitro and In Vivo. Journal of Nanoscience and Nanotechnology 2008, 8, 5297-5301.
86.del Arco, M.; Gutierrez, S.; Martin, C.; Rives, V.; Rocha, J. Synthesis and characterization of layered double hydroxides (LDH) intercalated with non-steroidal anti-inflammatory drugs (NSAID). Journal of Solid State Chemistry 2004, 177, 3954-3962.
87.Berber, M. R.; Minagawa, K.; Katoh, M.; Mori, T.; Tanaka, M. Nanocomposites of 2-arylpropionic acid drugs based on Mg-Al layered double hydroxide for dissolution enhancement. European Journal of Pharmaceutical Sciences 2008, 35, 354-360.
88.Ambrogi, V.; Perioli, L.; Ciarnelli, V.; Nocchetti, M.; Rossi, C. Effect of gliclazide immobilization into layered double hydroxide on drug release. European Journal of Pharmaceutics and Biopharmaceutics 2009, 73, 285-291.
89.Choi, G.; Lee, J. H.; Oh, Y. J.; Bin Choy, Y.; Park, M. C.; Chang, H. C.; Choy, J. H. Inorganic-polymer nanohybrid carrier for delivery of a poorly-soluble drug, ursodeoxycholic acid. International Journal of Pharmaceutics 2010, 402, 117-122.
90.Li, B. X.; He, J.; Evans, D. G.; Duan, X. Enteric-coated layered double hydroxides as a controlled release drug delivery system. International Journal of Pharmaceutics 2004, 287, 89-95.
91.Alcantara, A. C. S.; Aranda, P.; Darder, M.; Ruiz-Hitzky, E. Bionanocomposites based on alginate-zein/layered double hydroxide materials as drug delivery systems. J. Mater. Chem. 2010, 20, 9495-9504.
92.Berber, M. R.; Hafez, I. H.; Minagawa, K.; Mori, T.; Tanaka, M. Nanocomposite Formulation System of Lipid-Regulating Drugs Based on Layered Double Hydroxide: Synthesis, Characterization and Drug Release Properties. Pharmaceutical Research 2010, 27, 2394-2401.
93.Heng, D.; Cutler, D. J.; Chan, H. K.; Yun, J.; Raper, J. A. What is a suitable dissolution method for drug nanoparticles? Pharmaceutical Research 2008, 25, 1696-1701.
94.Li, Y.; Li, H.; Wei, M.; Lu, J.; Jin, L. pH-Responsive composite based on prednisone-block copolymer micelle intercalated inorganic layered matrix: Structure and in vitro drug release. Chemical Engineering Journal 2009, 151, 359-366.
95.Joshi, G. V.; Kevadiya, B. D.; Bajaj, H. C. Controlled release formulation of ranitidine-containing montmorillonite and Eudragit (R) E-100. Drug Development and Industrial Pharmacy 2010, 36, 1046-1053.
96.Nakayama, H.; Kuwano, K.; Tsuhako, M. Controlled release of drug from cyclodextrin-intercalated layered double hydroxide. Journal of Physics and Chemistry of Solids 2008, 69, 1552-1555.
97.Ni, Z. M.; Xing, F. F.; Wang, P.; Cao, G. T. Synthesis, characterization and release of curcumin-intercalated Mg-Al-layered double hydroxides (Retracted article. See vol. 47, pg. 469, 2010). Applied Clay Science 2008, 40, 72-80.
98.Wei, M.; Pu, M.; Guo, J.; Han, J. B.; Li, F.; He, J.; Evans, D. G.; Duan, X. Intercalation of L-Dopa into Layered Double Hydroxides: Enhancement of Both Chemical and Stereochemical Stabilities of a Drug through Host-Guest Interactions. Chemistry of Materials 2008, 20, 5169-5180.
99.Ladewig, K.; Niebert, M.; Xu, Z. P.; Gray, P. P.; Lu, G. Q. Controlled preparation of layered double hydroxide nanoparticles and their application as gene delivery vehicles. Applied Clay Science 2010, 48, 280-289.
100.Ladewig, K.; Niebert, M.; Xu, Z. P.; Gray, P. P.; Lu, G. Q. M. Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles. Biomaterials 2010, 31, 1821-1829.
101.Wong, Y. Y.; Markham, K.; Xu, Z. P.; Chen, M.; Lu, G. Q.; Bartlett, P. F.; Cooper, H. M. Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles. Biomaterials 2010, 31, 8770-8779.
102.Li, A.; Qin, L. L.; Zhu, D.; Zhu, R. R.; Sun, J.; Wang, S. L. Signalling pathways involved in the activation of dendritic cells by layered double hydroxide nanoparticles. Biomaterials 2010, 31, 748-756.
103.Li, A.; Qin, L. L.; Wang, W. R.; Zhu, R. R.; Yu, Y. C.; Liu, H.; Wang, S. L. The use of layered double hydroxides as DNA vaccine delivery vector for enhancement of anti-melanoma immune response. Biomaterials 2011, 32, 469-477.
104.Choi, S. J.; Oh, J. M.; Choy, J. H. Biocompatible Nanoparticles Intercalated with Anticancer Drug for Target Delivery: Pharmacokinetic and Biodistribution Study. Journal of Nanoscience and Nanotechnology 2010, 10, 2913-2916.
105.Musumeci, A. W.; Schiller, T. L.; Xu, Z. P.; Minchin, R. F.; Martin, D. J.; Smith, S. V. Synthesis and Characterization of Dual Radiolabeled Layered Double Hydroxide Nanoparticles for Use in In Vitro and In Vivo Nanotoxicology Studies. Journal of Physical Chemistry C 2010, 114, 734-740.
106.Masarudin, M. J.; Yusoff, K.; Rahim, R. A.; Hussein, M. Z. Successful transfer of plasmid DNA into in vitro cells transfected with an inorganic plasmid-Mg/Al-LDH nanobiocomposite material as a vector for gene expression. Nanotechnology 2009, 20.
107.Kong, X. G.; Jin, L.; Wei, M.; Duan, X. Antioxidant drugs intercalated into layered double hydroxide: Structure and in vitro release. Applied Clay Science 2010, 49, 324-329.
108.Zheng, G.; Chen, Y.; Intes, X.; Chance, B.; Glickson, J. D. Contrast-enhanced near-infrared (NIR) optical imaging for subsurface cancer detection. Journal of Porphyrins and Phthalocyanines 2004, 8, 1106-1117.
109.Goldenberg, G.; Hamid, O. Nonsurgical treatment options for basal cell carcinoma-focus on advanced disease. J. Drugs Dermatol. 2013, 12, 1369–1378.
110.Quereux, G.; Brocard, A.; Saint-Jean, M.; Peuvrel, L.; Knol, A.C.; Allix, R.; Khammari, A.; Renaut, J.J.; Dreno, B. Photodynamic therapy with methyl-aminolevulinic acid for paucilesional mycosis fungoides: A prospective open study and review of the literature. J. Am. Acad. Dermatol. 2013, 69, 890–897.
111.Ross, K.; Cherpelis, B.; Lien, M.; Fenske, N. Spotlighting the role of photodynamic therapy in cutaneous malignancy: An update and expansion. Dermatol. Surg. 2013, 39, 1733–1744.
112.Separovic, D.; Breen, P.; Boppana, N.B.; van Buren, E.; Joseph, N.; Kraveka, J.M.; Rahmaniyan, M.; Li, L.; Gudz, T.I.; Bielawska, A.; et al. Increased killing of SCCVII squamous cell carcinoma cells after the combination of Pc 4 photodynamic therapy and dasatinib is associated with enhanced caspase-3 activity and ceramide synthase 1 upregulation. Int. J. Oncol. 2013, 43, 2064–2072.
113.Park, J.Y.; Jang, Y.H.; Kim, Y.S.; Sohn, S.; Kim, Y.C. Ultrastructural changes in photorejuvenation induced by photodynamic therapy in a photoaged mouse model. Eur. J. Dermatol.2013, 23, 471–477.
114.Almutawa, F.; Thalib, L.; Heckman, D.; Sun, Q.; Hamzavi, I.; Lim, H.W. Efficacy of localized phototherapy and photodynamic therapy for psoriasis: A systematic review and meta-analysis. Photodermatol. Photoimmunol. Photomed. 2015, 31, 5–14.
115.Kankala, R.K.; Kuthati, Y.; Liu, C.-L.; Lee, C.-H. Hierarchical coated metal hydroxide nanoconstructs as potential controlled release carriers of photosensitizer for skin melanoma. RSC Adv. 2015, 5, 42666–42680.
116.Konan, Y.N.; Gurny, R.; Allemann, E. State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B 2002, 66, 89–106.
117.Van Nostrum, C.F. Delivery of photosensitizers in photodynamic therapy. Adv. Drug Deliv. Rev. 2004, 56, 5–6.
118.Kessel, D. Delivery of photosensitizing agents. Adv. Drug Deliv. Rev. 2004, 56, 7–8.
119.Anderson, S.J.; Steinman, H.K.; Mazzurco, J.D.; Dixon, A.J. Prolonged adverse events following photodynamic therapy: Regulatory implications. J. Drugs Dermatol. 2014, 13, 62–66.
120.Chung, I.W.; Eljamel, S. Risk factors for developing oral 5-aminolevulenic acid-induced side effects in patients undergoing fluorescence guided resection. Photodiagnosis Photodyn. Ther. 2013, 10, 362–367.
121.Reimer, P.; Balzer, T. Ferucarbotran (Resovist): A new clinically approved res-specific contrast agent for contrast-enhanced mri of the liver: Properties, clinical development, and applications. Eur. Radiol. 2003, 13, 1266–1276.
122.Rivera Gil, P.; Huhn, D.; del Mercato, L.L.; Sasse, D.; Parak, W.J. Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharmacol. Res. 2010, 62, 115–125.
123.Xia, Y. Nanomaterials at work in biomedical research. Nat. Mater. 2008, 7,758–760.
124.Rosenholm, J.M.; Mamaeva, V.; Sahlgren, C.; Linden, M. Nanoparticles in targeted cancer therapy: Mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine (Lond.) 2012, 7, 111–120.
125.Bu, L.; Xie, J.; Chen, K.; Huang, J.; Aguilar, Z.P.; Wang, A.; Sun, K.W.; Chua,M.S.; So, S.; Cheng, Z.; et al. Assessment and comparison of magnetic nanoparticles as mri contrast agents in a rodent model of human hepatocellular carcinoma. Contrast Media Mol. Imaging 2012, 7, 363–372.
126.Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7, 771–782.
127.Wei, P.-R.; Cheng, S.-H.; Liao, W.-N.; Kao, K.-C.; Weng, C.-F.; Lee, C.-H. Synthesis of chitosan-coated near-infrared layered double hydroxide nanoparticles for in vivo optical imaging. J. Mater. Chem. 2012, 22, 5503–5513.
128.Kuthati, Y.; Kankala, R.K.; Lee, C.-H. Layered double hydroxide nanoparticles for biomedical applications: Current status and recent prospects. Appl. Clay Sci. 2015, 112–113, 100–116.
129.Wang, Y.; Zhang, D.; Bao, Q.; Wu, J.J.; Wan, Y. Controlled drug release characteristics and enhanced antibacterial effect of graphene oxide-drug intercalated layered double hydroxide hybrid films. J. Mater. Chem. 2012, 22, 23106–23113.
130.Kim, T.H.; Lee, J.A.; Choi, S.J.; Oh, J.M. Polymer coated CaAl-layered double hydroxide nanomaterials for potential calcium supplement. Int. J. Mol. Sci.2014, 15, 22563–22579.
131.Zhang, K.; Xu, Z.P.; Lu, J.; Tang, Z.Y.; Zhao, H.J.; Good, D.A.; Wei, M.Q. Potential for layered double hydroxides-based, innovative drug delivery systems. Int. J. Mol. Sci. 2014, 15, 7409–7428.
132.Barahuie, F.; Hussein, M.Z.; Fakurazi, S.; Zainal, Z. Development of drug delivery systems based on layered hydroxides for nanomedicine. Int. J. Mol.Sci. 2014, 15, 7750–7786.
133.Ariga, K.; Yamauchi, Y.; Rydzek, G.; Ji, Q.; Yonamine, Y.; Wu, K.C.W.; Hill, J.P. Layer-by-layer nanoarchitectonics: Invention, innovation, and evolution.Chem. Lett. 2014, 43, 36–68.
134.Kankala, R.K.; Kuthati, Y.; Sie, H.-W.; Shih, H.-Y.; Lue, S.-I.; Kankala, S.; Jeng, C.-C.;Deng, J.-P.; Weng, C.-F.; Liu, C.-L.; et al. Multi-laminated metal hydroxide nanocontainers for oral-specific delivery for bioavailability improvement and treatment of inflammatory paw edema in mice. J. Colloid Interface Sci. 2015, 458, 217–228.
135.Miao, Y.-E.; Zhu, H.; Chen, D.; Wang, R.; Tjiu, W.W.; Liu, T. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems. Mater. Chem. Phys. 2012, 134, 623–630.
136.DeLeon, V.H.; Nguyen, T.D.; Nar, M.; D’Souza, N.A.; Golden, T.D. Polymer nanocomposites for improved drug delivery efficiency. Mater. Chem. Phys.2012, 132, 409–415.
137.Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin.Pharmacol. Ther. 2008, 83, 761–769.
138.Kuo, Y.-M.; Kuthati, Y.; Kankala, R.K.; Wei, P.-R.; Weng, C.-F.; Liu, C.-L.; Sung, P.-J.; Mou, C.-Y.; Lee, C.-H. Layered double hydroxide nanoparticles to enhance organ-specific targeting and the anti-proliferative effect of cisplatin. J. Mater. Chem. B 2015, 3, 3447–3458.
139.Choy, J.H.; Jung, J.S.; Oh, J.M.; Park, M.; Jeong, J.; Kang, Y.K.; Han, O.J. Layered double hydroxide as an efficient drug reservoir for folate derivatives.Biomaterials 2004, 25, 3059–3064.
140.Choy, J.H.; Kwak, S.Y.; Jeong, Y.J.; Park, J.S. Inorganic layered double hydroxides as nonviral vectors. Angew. Chem. Int. Ed. Engl. 2000, 39, 4042–4045.
141.Oh, J.M.; Choi, S.J.; Kim, S.T.; Choy, J.H. Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: Enhanced efficacy due to clathrin-mediated endocytosis. Bioconjug. Chem. 2006, 17, 1411–1417.
142.Oh, J.-M.; Choi, S.-J.; Lee, G.-E.; Kim, J.-E.; Choy, J.-H. Inorganic metal hydroxide nanoparticles for targeted cellular uptake through clathrin-mediated endocytosis. Chem. Asian J. 2009, 4, 67–73.
143.Choi, S.J.; Choy, J.H. Layered double hydroxide nanoparticles as target-specific delivery carriers: Uptake mechanism and toxicity. Nanomedicine (Lond.) 2011, 6, 803–814.
144.Wong, Y.; Markham, K.; Xu, Z.P.; Chen, M.; Max Lu, G.Q.; Bartlett, P.F.; Cooper, H.M. Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles. Biomaterials 2010, 31, 8770–8779.
145.Xu, Z.P.; Walker, T.L.; Liu, K.L.; Cooper, H.M.; Lu, G.Q.M.; Bartlett, P.F.Layered double hydroxide nanoparticles as cellular delivery vectors of supercoiled plasmid DNA. Int. J. Nanomed. 2007, 2, 163–174.
146.Ladewig, K.; Niebert, M.; Xu, Z.P.; Gray, P.P.; Lu, G.Q. Controlled preparation of layered double hydroxide nanoparticles and their application as gene delivery vehicles. Appl. Clay Sci. 2010, 48, 280–289.
147.Shao, M.; Ning, F.; Zhao, J.; Wei, M.; Evans, D.G.; Duan, X. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. J. Am. Chem. Soc. 2012, 134, 1071–1077.
148.Gu, Z.; Rolfe, B.E.; Xu, Z.P.; Campbell, J.H.; Lu, G.Q.; Thomas, A.C. Antibody-targeted drug delivery to injured arteries using layered double hydroxide nanoparticles. Adv. Healthc. Mater. 2012, 1, 669–673.
149.San Román, M.S.; Holgado, M.J.; Salinas, B.; Rives, V. Drug release from layered double hydroxides and from their polylactic acid (PLA) nanocomposites. Appl. Clay Sci. 2013, 71, 1–7.
150.Kura, A.U.; Ain, N.M.; Hussein, M.Z.; Fakurazi, S.; Hussein-Al-Ali, S.H.Toxicity and metabolism of layered double hydroxide intercalated with levodopa in a Parkinson’s disease model. Int. J. Mol. Sci. 2014, 15, 5916–5927.
151.Eili, M.; Shameli, K.; Ibrahim, N.A.; Yunus, W.M. Degradability enhancement of poly(lactic acid) by stearate-Zn3Al LDH nanolayers. Int. J. Mol. Sci. 2012,13, 7938–7951.
152.Kapusetti, G.; Misra, N.; Singh, V.; Kushwaha, R.K.; Maiti, P. Bone cement/layered double hydroxide nanocomposites as potential biomaterials for joint implant. J. Biomed. Mater. Res. A 2012, 100A, 3363–3373.
153.Liu, J.; Harrison, R.; Zhou, J.Z.; Liu, T.T.; Yu, C.; Lu, G.Q.; Qiao, S.Z.; Xu, Z.P. Synthesis of nanorattles with layered double hydroxide core and mesoporous silica shell as delivery vehicles. J. Mater. Chem. 2011, 21, 10641–10644.
154.Stoica, G.; Castello Serrano, I.; Figuerola, A.; Ugarte, I.; Pacios, R.; Palomares, E. Layered double hydroxides as carriers for quantum dots@silica nanospheres. Nanoscale 2012, 4, 5409–5419.
155.El Hadrami, A.; Adam, L.R.; el Hadrami, I.; Daayf, F. Chitosan in plant protection. Mar. Drugs 2010, 8, 968–987.
156.No, H.K.; Meyers, S.P.; Prinyawiwatkul, W.; Xu, Z. Applications of chitosan for improvement of quality and shelf life of foods: A review. J. Food Sci. 2007, 72, R87–R100.
157.Hirano, S.; Hirochi, K.; Hayashi, K.-I.; Mikami, T.; Tachibana, H. Cosmetic and pharmaceutical uses of chitin and chitosan. In Cosmetic and Pharmaceutical Applications of Polymers; Gebelein, C., Cheng, T., Yang, V., Eds.; Springer US: New York, NY, USA, 1991; 95–104.
158.Patel, M.P.; Patel, R.R.; Patel, J.K. Chitosan mediated targeted drug delivery system: A review. J. Pharm. Pharm. Sci. 2010, 13, 536–557.
159.Wang, Z.; Ma, R.; Yan, L.; Chen, X.; Zhu, G. Combined chemotherapy and photodynamic therapy using a nanohybrid based on layered double hydroxides to conquer cisplatin resistance. Chem. Commun. 2015, 51, 11587–11590.
160.Li, X.-S.; Ke, M.-R.; Huang, W.; Ye, C.-H.; Huang, J.-D. A pH-responsive layered double hydroxide (LDH)–phthalocyanine nanohybrid for efficient photodynamic therapy. Chemistry 2015, 21, 3310–3317.
161.Stefanakis, D.; Seimenis, I.; Ghanotakis, D. Synthesis and characterization of gadolinium nanosheets with bound rose bengal: Potential use in photodynamic therapy and MRI. J. Nanopart. Res. 2014, 16, 1–9.
162.Liang, R.; Tian, R.; Ma, L.; Zhang, L.; Hu, Y.; Wang, J.; Wei, M.; Yan, D.; Evans, D.G.; Duan, X. A supermolecular photosensitizer with excellent anticancer performance in photodynamic therapy. Adv. Funct. Mater. 2014, 24, 3144–3151.
163.Merchan, M.; Ouk, T.S.; Kubat, P.; Lang, K.; Coelho, C.; Verney, V.; Commereuc, S.; Leroux, F.; Sol, V.; Taviot-Gueho, C. Photostability and photobactericidal properties of porphyrin-layered double hydroxide-polyurethane composite films. J. Mater. Chem. B 2013, 1, 2139–2146.
164.Lang, K.; Bezdička, P.; Bourdelande, J.L.; Hernando, J.; Jirka, I.; Káfuňková,E.; Kovanda, F.; Kubát, P.; Mosinger, J.; Wagnerová, D.M. Layered double hydroxides with intercalated porphyrins as photofunctional materials: Subtle structural changes modify singlet oxygen production. Chem. Mater. 2007, 19, 3822–3829.
165.Kantonis, G.; Trikeriotis, M.; Ghanotakis, D.F. Biocompatible protoporphyrin IX-containing nanohybrids with potential applications in photodynamic therapy. J. Photochem. Photobiol. A Chem. 2007, 185, 62–66.
166.Reddi, E.; Zhou, C.; Biolo, R.; Menegaldo, E.; Jori, G. Liposome- or LDL-administered Zn(ii)-phthalocyanine as a photodynamic agent for tumours. I. Pharmacokinetic properties and phototherapeutic efficiency. Br. J. Cancer 1990, 61, 407–411.
167.Lee, S.J.; Koo, H.; Jeong, H.; Huh, M.S.; Choi, Y.; Jeong, S.Y.; Byun, Y.; Choi, K.; Kim, K.; Kwon, I.C. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J. Control.Release 2011, 152, 21–29.
168.Xu, Z. P.; Stevenson, G.; Lu, C. Q.; Lu, G. Q. Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions. Journal of Physical Chemistry B 2006, 110, 16923-16929.
169.Kean, T.; Roth, S.; Thanou, M. Trimethylated chitosans as non-viral gene delivery vectors: Cytotoxicity and transfection efficiency. Journal of Controlled Release 2005, 103, 643-653.
170.Lin, Y. S.; Haynes, C. L. Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity. Journal of the American Chemical Society 2010, 132, 4834-4842.
171.Oh, J.-M.; Choi, S.-J.; Lee, G.-E.; Han, S.-H.; Choy, J.-H. Inorganic drug-delivery nanovehicle conjugated with cancer-cell-specific ligand. Adv. Funct.Mater. 2009, 19, 1617–1624.
172.Xu, Z.P.; Stevenson, G.S.; Lu, C.Q.; Lu, G.Q.; Bartlett, P.F.; Gray, P.P. Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J. Am. Chem. Soc. 2006, 128, 36–37.
173.Ladewig, K.; Niebert, M.; Xu, Z.P.; Gray, P.P.; Lu, G.Q. Efficient sirna delivery to mammalian cells using layered double hydroxide nanoparticles. Biomaterials 2010, 31, 1821–1829.
174.Xu, Z.P.; Stevenson, G.; Lu, C.Q.; Lu, G.Q. Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions. J. Phys. Chem. B 2006, 110, 16923–16929.
175.Mathur, A.; Hong, Y.; Kemp, B.K.; Barrientos, A.A.; Erusalimsky, J.D. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc. Res. 2000, 46, 126–138.
176.Mortera, R.; Vivero-Escoto, J.; Slowing, I.I.; Garrone, E.; Onida, B.; Lin,V.S.Y. Cell-induced intracellular controlled release of membrane impermeable cysteine from a mesoporous silica nanoparticle-based drug delivery system.Chem. Commun. 2009, 3219–3221.
177.Lee, C. H.; Lin, T. S.; Lin, H. P.; Zhao, Q.; Liu, S. B.; Mou, C. Y. High loading of C-60 in nanochannels of mesoporous MCM-41 materials. Microporous and Mesoporous Materials 2003, 57, 199-209.
178.Popielarski, S. R.; Hu-Lieskovan, S.; French, S. W.; Triche, T. J.; Davis, M. E. A nanoparticle-based model delivery system to guide the rational design of gene delivery to the liver. 2. In vitro and in vivo uptake results. Bioconjugate Chemistry 2005, 16, 1071-1080.
179.Dong, L.; Gao, S. Y.; Diao, H. J.; Chen, J. N.; Zhang, J. F. Galactosylated low molecular weight chitosan as a carrier delivering oligonucleotides to Kupffer cells instead of hepatocytes in vivo. Journal of Biomedical Materials Research Part A 2008, 84A, 777-784.
180.Shieh, D. B.; Cheng, F. Y.; Su, C. H.; Yeh, C. S.; Wu, M. T.; Wu, Y. N.; Tsai, C.Y.; Wu, C. L.; Chen, D. H.; Chou, C. H. Aqueous dispersions of magnetite nanoparticles with NH3+ surfaces for magnetic manipulations of biomolecules and MRI contrast agents. Biomaterials 2005, 26, 7183-7191.
181.Bergen, J. M.; Von Recum, H. A.; Goodman, T. T.; Massey, A. P.; Pun, S. H. Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromolecular Bioscience 2006, 6,506-516.
182.Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X.Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnology 2007, 2, 47-52.
183.Lee, C. H.; Cheng, S. H.; Wang, Y. J.; Chen, Y. C.; Chen, N. T.; Souris, J.; Chen, C. T.; Mou, C. Y.; Yang, C. S.; Lo, L. W. Near-Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution. Advanced Functional Materials 2009, 19, 215-222.
184.Lee, M. J. E.; Veiseh, O.; Bhattarai, N.; Sun, C.; Hansen, S. J.; Ditzler, S.; Knoblaugh, S.; Lee, D.; Ellenbogen, R.; Zhang, M. Q.; Olson, J. M. Rapid Pharmacokinetic and Biodistribution Studies Using Cholorotoxin-Conjugated Iron Oxide Nanoparticles: A Novel Non-Radioactive Method. Plos One 2010, 5.
185.de Chermont, Q. L.; Chaneac, C.; Seguin, J.; Pelle, F.; Maitrejean, S.; Jolivet, J.P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proceedings of the National Academy of Sciences of the United States of America 2007, 104, 9266-9271.
186.Gu, Z.; Thomas, A. C.; Xu, Z. P.; Campbell, J. H.; Lu, G. Q. In vitro sustained release of LMWH from MgAl-layered double hydroxide nanohybrids. Chemistry of Materials 2008, 20, 3715-3722.
187.Xia, S. J.; Ni, Z. M.; Xu, Q.; Hu, B. X.; Hu, J. Layered double hydroxides as supports for intercalation and sustained release of anti hypertensive drugs. Journal of Solid State Chemistry 2008, 181, 2610-2619.
188.Yaseen, M. A.; Yu, J.; Jung, B. S.; Wong, M. S.; Anvari, B. Biodistribution of Encapsulated Indocyanine Green in Healthy Mice. Molecular Pharmaceutics 2009, 6, 1321-1332.
189.Sunil Virkar, A.C. Synthesis and characterization of nanocomposites based on polyethylene and Mg-Al layered double hydroxide with intercalated compounds.Adv. Mater. Sci. Appl. 2014, 3, 150–156.
190.Wang, Z.Y.; Zhao, Y.; Ren, L.; Jin, L.H.; Sun, L.P.; Yin, P.; Zhang, Y.F.; Zhang, Q.Q. Novel gelatin-siloxane nanoparticles decorated by tat peptide as vectors for gene therapy. Nanotechnology 2008, 19, 445103.
191.Watson, P.; Jones, A.T.; Stephens, D.J. Intracellular trafficking pathways and drug delivery: Fluorescence imaging of living and fixed cells. Adv. Drug Deliv.Rev. 2005, 57, 43–61.
192.Lee, S.J.; Koo, H.; Lee, D.E.; Min, S.; Lee, S.; Chen, X.; Choi, Y.; Leary, J.F.; Park, K.; Jeong, S.Y.; et al. Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Biomaterials 2011, 32, 4021–4029.
193.Van Nostrum, C.F. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv. Drug Deliv. Rev. 2004, 56, 9–16.
194.Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90,889–905.
195.McNair, F.I.; Marples, B.; West, C.M.; Moore, J.V. A comet assay of DNA damage and repair in K562 cells after photodynamic therapy using haematoporphyrin derivative, methylene blue and meso-tetrahydroxyphenylchlorin. Br. J. Cancer 1997, 75, 1721–1729.
196.Haylett, A.K.; Ward, T.H.; Moore, J.V. DNA damage and repair in gorlin syndrome and normal fibroblasts after aminolevulinic acid photodynamic therapy: A comet assay study. Photochem. Photobiol. 2003, 78, 337–341.
197.Woods, J.A.; Traynor, N.J.; Brancaleon, L.; Moseley, H. The effect of photofrin on DNA strand breaks and base oxidation in hacat keratinocytes: A comet assay study. Photochem. Photobiol.2004, 79, 105–113.
198.El-Hussein, A.; Harith, M.; Abrahamse, H. Assessment of DNA damage after photodynamic therapy using a metallophthalocyanine photosensitizer. Int. J.Photoenergy 2012, 2012, 281068.
199.Miller, J.D.; Baron, E.D.; Scull, H.; Hsia, A.; Berlin, J.C.; McCormick, T.; Colussi, V.; Kenney, M.E.; Cooper, K.D.; Oleinick, N.L. Photodynamic therapy with the phthalocyanine photosensitizer Pc 4: The case experience with preclinical mechanistic and early clinical-translational studies. Toxicol. Appl.Pharmacol. 2007, 224, 290–299.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top