跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1742:3a1e:c308:7608) 您好!臺灣時間:2024/12/08 09:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游智全
研究生(外文):Jhih-Cyuan You
論文名稱:綬草萃取液對肝臟細胞及酒精性脂肪肝之降脂功效
論文名稱(外文):Lipotropic effect of Spiranthes sinensis extract on the FL83B cells and alcoholic fatty liver mice
指導教授:翁慶豐翁慶豐引用關係
指導教授(外文):Ching-Feng Weng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:78
中文關鍵詞:酒精性肝病酒精性脂肪肝酒精油紅染色
外文關鍵詞:Alcoholic liver diseaseAlcoholic fatty liver diseaseAlcoholOil red O staining
相關次數:
  • 被引用被引用:1
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
酒精性脂肪肝主要是由長期飲酒所造成的肝臟脂肪堆積病症,當脂肪進入人體會刺激脂肪生合成相關路徑並造成氧化壓力並加速脂肪堆積。甚且,若脂肪肝不及時給予治療會更加惡化造成後續肝硬化、肝癌等病症。因此,尋找天然以及具有潛力的中草藥物來治療酒精性脂肪已是重要課題。
綬草 (Spiranthes sinensis)是個尚未被開發及了解的中草藥物。本研究透過綬草萃取物用於酒精及油酸誘導肝細胞組織FL83B,並透過紅油染色及及時聚合酶鏈式反應分析,發現綬草萃取物具有改變油滴堆積之功效並且抑制脂肪生合成之相關基因Sterol regulatory element-binding proteins 1C (SREBP-1C)及Acetyl-CoA carboxylases 1 (ACC1)表現;其次利用酒精誘導之酒精性脂肪肝小鼠給予綬草萃取物後,在血液生化值及肝臟脂肪含量有具有減緩功效,並抑制脂肪生合成之相關蛋白Fatty acid synthesis (FASN)及ACC1,且增加脂肪分解相關蛋白Carnitine palmitoyltransferase 1B (CPT1B)、Peroxisome proliferator-activated receptor alpha (PPARα)以及5’ AMP-activated protein kinase (AMPK)。在肝臟切片中也可看出綬草萃取物可減緩脂肪堆積。總結,綬草不僅在酒精及油酸誘導細胞平台以及酒精誘導動物平台皆具有減脂功效,因此,綬草對在酒精性脂肪肝具有保護肝臟作用的藥物。
Alcoholic fatty liver disease (AFLD), mainly caused by long-term alcohol consumption and led to the accumulation of fat in liver tissues. Fat can cause oxidative stress and triggers the signal pathway and subsequently accelerates lipid droplet accumulation via the activation of adipogenesis in liver. Furthermore, it will get worse to cirrhosis or hepatoma when AFLD is not impeded shortly. Therefore, the exploration of potential candidate from natural sources for alleviation of AFLD renders interesting issue. Spiranthes sinensis, a folk herb, is still unexplored in phytochemical properties for medicinal value. This study was conducted to investigate the biological activity of S. sinensis extract for applying in FL83B cells in vitro by oil red o staining to measure lipid droplet and the results showed that S. sinesis extract could reduce lipid droplets in alcohol plus oleic acid-induced FL83B cells. S. sinensis extract also significantly reduced lipogensis SREBP-1C and ACC1 mRNA levels by qPCR. Moreover, the alcohol-induced fatty liver C75BL/6 mice was treated with S. sinensis extract to determine the efficacy of alcoholic-fatty liver via lipotropic factors using qPCR and micrographic analysis by H & E staining of liver tissues. The results revealed that the reduction of ACC1 and FASN with the increase of CPT1B, PPARα, and AMPKα with S. sinensis extract treatment resulted in alleviation of fatty liver via Western blot and qPCR. Histopathological review, SS extract slightly reduced lipid droplets in liver of alcohol-induced mice. Taken together, S. sinesis extract possesses lipotropic effect on the alcohol plus oleic-induced FL83B cells and the alcohol-induced mice as well, suggesting S. sinensis extract is evident as a candidate of liver-protection source particularly alcoholic fatty liver.
摘要 I
Abstract V
Contents VII
Table contents XI
Figure contents XIII
Abbreviations XV
Introduction 1
1. Epidemiology of FLD 1
2. Definition and classification of FLD 1
3. Causes of FLD 2
4. Steatosis 3
5. Reducing equivalents (NADH) 3
6. Role of sterol regulatory element-binding proteins 4
7. Role of AMPK 5
8. Role of mammalian sirtuin-1 5
9. Role of peroxisome proliferator-activated receptor-alpha (PPAR-α) 6
10. Treatment of ALDH 7
11. Spiranthes sinensis 7
12. Motivation and aim 8
Material and methods 11
1. Plant material and crude extract 11
2. Cell culture 11
3. MTT assay 11
4. Oil red O staining 12
5. Animal experiments 12
6. Fatty liver induced and S. sinensis treatment 13
7. Blood for biochemical analysis 13
8. Fat content of liver measurement 14
9. Western Blot 14
10. RNA isolation and RT-PCR 15
11. Real-time PCR 15
12. Tissue histopathology 16
13. Statistical analysis 16
Results 17
1. Cytotoxicity of S. sinensis crude extract and taurine in FL83B cells. 17
2. Lipid accumulation on FL83B cells after treatments with S. sinensis extract and taurine. 17
3. The altered genes expression levels of S. sinensis crude extract and taurine on FL83B cells. 18
4. Blood biochemical levels (ALT, AST, cholesterol, triglyceride, HDL, and LDL) in fatty liver mice. 18
5. The appearance of fatty liver in mice. 19
6. Body weight and fat content of liver in mice. 19
7. The altered genes expression levels of S. sinensis extract and taurine in alcoholic fatty liver mice. 20
8. The altered AMPKα protein levels of S. sinensis crude extract and taurine in alcoholic fatty liver mice. 21
9. The altered FASN protein levels of S. sinensis crude extract and taurine in alcoholic fatty liver mice. 22
10. The altered ACC1 and p-ACC1 protein levels of Spiranthes sinensis crude extract and taurine in alcoholic fatty liver mice. 22
11. The altered PPARα protein levels of Spiranthes sinensis crude extract and taurine in alcoholic fatty liver mice. 23
12. Histopathological changes in tissue sections. 23
Discussion 25
Conclusions 28
Future work 29
References 31
[1] Ye Y, Kerr WC. Alcohol and liver cirrhosis mortality in the United States: comparison of methods for the analyses of time-series panel data models. Alcoholism, clinical and experimental research. 2011;35:108-15.
[2] Beier JI, Arteel GE, McClain CJ. Advances in alcoholic liver disease. Current gastroenterology reports. 2011;13:56-64.
[3] Levene AP, Goldin RD. The epidemiology, pathogenesis and histopathology of fatty liver disease. Histopathology. 2012;61:141-52.
[4] Day CP. Pathogenesis of steatohepatitis. Best practice & research Clinical gastroenterology. 2002;16:663-78.
[5] Bellentani S, Saccoccio G, Costa G, Tiribelli C, Manenti F, Sodde M, et al. Drinking habits as cofactors of risk for alcohol induced liver damage. The Dionysos Study Group. Gut. 1997;41:845-50.
[6] Baraona E, Lieber CS. Effects of ethanol on lipid metabolism. Journal of lipid research. 1979;20:289-315.
[7] Brunt EM, Tiniakos DG. Histopathology of nonalcoholic fatty liver disease. World journal of gastroenterology. 2010;16:5286-96.
[8] Sorbi D, Boynton J, Lindor KD. The ratio of aspartate aminotransferase to alanine aminotransferase: potential value in differentiating nonalcoholic steatohepatitis from alcoholic liver disease. The American journal of gastroenterology. 1999;94:1018-22.
[9] Anton RF, Lieber C, Tabakoff B, Group CDS. Carbohydrate-deficient transferrin and gamma-glutamyltransferase for the detection and monitoring of alcohol use: results from a multisite study. Alcoholism, clinical and experimental research. 2002;26:1215-22.
[10] Hultcrantz R, Gabrielsson N. Patients with persistent elevation of aminotransferases: investigation with ultrasonography, radionuclide imaging and liver biopsy. Journal of internal medicine. 1993;233:7-12.
[11] Tian C, Stokowski RP, Kershenobich D, Ballinger DG, Hinds DA. Variant in PNPLA3 is associated with alcoholic liver disease. Nature genetics. 2010;42:21-3.
[12] Sevastianova K, Kotronen A, Gastaldelli A, Perttila J, Hakkarainen A, Lundbom J, et al. Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans. The American journal of clinical nutrition. 2011;94:104-11.
[13] Kwon HJ, Won YS, Park O, Chang B, Duryee MJ, Thiele GE, et al. Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice. Hepatology. 2014;60:146-57.
[14] Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011;141:1572-85.
[15] O'Shea RS, Dasarathy S, McCullough AJ. Alcoholic liver disease. The American journal of gastroenterology. 2010;105:14-32; quiz 3.
[16] Raynard B, Balian A, Fallik D, Capron F, Bedossa P, Chaput JC, et al. Risk factors of fibrosis in alcohol-induced liver disease. Hepatology. 2002;35:635-8.
[17] Xu J, Lai KK, Verlinsky A, Lugea A, French SW, Cooper MP, et al. Synergistic steatohepatitis by moderate obesity and alcohol in mice despite increased adiponectin and p-AMPK. Journal of hepatology. 2011;55:673-82.
[18] Wilk AI, Jensen NM, Havighurst TC. Meta-analysis of randomized control trials addressing brief interventions in heavy alcohol drinkers. Journal of general internal medicine. 1997;12:274-83.
[19] Salaspuro MP, Shaw S, Jayatilleke E, Ross WA, Lieber CS. Attenuation of the ethanol-induced hepatic redox change after chronic alcohol consumption in baboons: metabolic consequences in vivo and in vitro. Hepatology. 1981;1:33-8.
[20] Eaton S, Record CO, Bartlett K. Multiple biochemical effects in the pathogenesis of alcoholic fatty liver. European journal of clinical investigation. 1997;27:719-22.
[21] Zakhari S, Li TK. Determinants of alcohol use and abuse: Impact of quantity and frequency patterns on liver disease. Hepatology. 2007;46:2032-9.
[22] Bailey SM, Cunningham CC. Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. Free radical biology & medicine. 2002;32:11-6.
[23] Fromenty B, Berson A, Pessayre D. Microvesicular steatosis and steatohepatitis: role of mitochondrial dysfunction and lipid peroxidation. Journal of hepatology. 1997;26 Suppl 1:13-22.
[24] Lieber CS. Hepatic, metabolic and toxic effects of ethanol: 1991 update. Alcoholism, clinical and experimental research. 1991;15:573-92.
[25] You M, Crabb DW. Molecular mechanisms of alcoholic fatty liver: role of sterol regulatory element-binding proteins. Alcohol. 2004;34:39-43.
[26] Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. The Journal of clinical investigation. 1997;99:838-45.
[27] Shimano H, Horton JD, Hammer RE, Shimomura I, Brown MS, Goldstein JL. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. The Journal of clinical investigation. 1996;98:1575-84.
[28] Yahagi N, Shimano H, Hasty AH, Matsuzaka T, Ide T, Yoshikawa T, et al. Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lep(ob)/Lep(ob) mice. The Journal of biological chemistry. 2002;277:19353-7.
[29] Jacobsen E. The metabolism of ethyl alcohol. Pharmacological reviews. 1952;4:107-35.
[30] You M, Fischer M, Deeg MA, Crabb DW. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). The Journal of biological chemistry. 2002;277:29342-7.
[31] You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology. 2004;127:1798-808.
[32] Lin HZ, Yang SQ, Zeldin G, Diehl AM. Chronic ethanol consumption induces the production of tumor necrosis factor-alpha and related cytokines in liver and adipose tissue. Alcoholism, clinical and experimental research. 1998;22:231S-7S.
[33] Ji C, Deng Q, Kaplowitz N. Role of TNF-alpha in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury. Hepatology. 2004;40:442-51.
[34] Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. The Journal of clinical investigation. 2006;116:1776-83.
[35] Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. The American journal of physiology. 1999;277:E1-10.
[36] Lin HZ, Yang SQ, Chuckaree C, Kuhajda F, Ronnet G, Diehl AM. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nature medicine. 2000;6:998-1003.
[37] Lieber CS, Leo MA, Wang X, Decarli LM. Effect of chronic alcohol consumption on Hepatic SIRT1 and PGC-1alpha in rats. Biochemical and biophysical research communications. 2008;370:44-8.
[38] You M, Cao Q, Liang X, Ajmo JM, Ness GC. Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice. The Journal of nutrition. 2008;138:497-501.
[39] You M, Liang X, Ajmo JM, Ness GC. Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. American journal of physiology Gastrointestinal and liver physiology. 2008;294:G892-8.
[40] Yu S, Rao S, Reddy JK. Peroxisome proliferator-activated receptors, fatty acid oxidation, steatohepatitis and hepatocarcinogenesis. Current molecular medicine. 2003;3:561-72.
[41] Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nature medicine. 2004;10:355-61.
[42] Lee GY, Kim NH, Zhao ZS, Cha BS, Kim YS. Peroxisomal-proliferator-activated receptor alpha activates transcription of the rat hepatic malonyl-CoA decarboxylase gene: a key regulation of malonyl-CoA level. The Biochemical journal. 2004;378:983-90.
[43] Costet P, Legendre C, More J, Edgar A, Galtier P, Pineau T. Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. The Journal of biological chemistry. 1998;273:29577-85.
[44] Nanji AA, Dannenberg AJ, Jokelainen K, Bass NM. Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation. The Journal of pharmacology and experimental therapeutics. 2004;310:417-24.
[45] Ip E, Farrell GC, Robertson G, Hall P, Kirsch R, Leclercq I. Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology. 2003;38:123-32.
[46] Fischer M, You M, Matsumoto M, Crabb DW. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonist treatment reverses PPARalpha dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice. The Journal of biological chemistry. 2003;278:27997-8004.
[47] Imperiale TF, McCullough AJ. Do corticosteroids reduce mortality from alcoholic hepatitis? A meta-analysis of the randomized trials. Annals of internal medicine. 1990;113:299-307.
[48] Newell-Price J. Diagnosis of Cushing's syndrome: comparison of the specificity of first-line biochemical tests. Nature clinical practice Endocrinology & metabolism. 2008;4:192-3.
[49] Mathurin P, O'Grady J, Carithers RL, Phillips M, Louvet A, Mendenhall CL, et al. Corticosteroids improve short-term survival in patients with severe alcoholic hepatitis: meta-analysis of individual patient data. Gut. 2011;60:255-60.
[50] Chen W, Guo JX, Chang P. The effect of taurine on cholesterol metabolism. Molecular nutrition & food research. 2012;56:681-90.
[51] Wu G, Tang R, Yang J, Tao Y, Liu Z, Feng Y, et al. Taurine accelerates alcohol and fat metabolism of rats with alcoholic Fatty liver disease. Advances in experimental medicine and biology. 2015;803:793-805.
[52] Oliva L, Beauge F, Choquart D, Montet AM, Guitaoui M, Montet JC. Ursodeoxycholate alleviates alcoholic fatty liver damage in rats. Alcoholism, clinical and experimental research. 1998;22:1538-43.
[53] Lin YL, Wang WY, Kuo YH, Liu YH. Homocyclotirucallane and two dihydrophenanthrenes from Spiranthes sinensis. Chemical & pharmaceutical bulletin. 2001;49:1098-101.
[54] Lin YL, Huang RL, Don MJ, Kuo YH. Dihydrophenanthrenes from Spiranthes sinensis. Journal of natural products. 2000;63:1608-10.
[55] Li CY, Liu J, Su XH, Yuan ZP, Zhong YJ, Li YF, et al. New dimeric phenanthrene and flavone from Spiranthes sinensis. Journal of Asian natural products research. 2013;15:417-21.
[56] 史閎元. 綬草萃取物於巨噬細胞與肝星狀細胞抗發炎機轉之探討. 花蓮縣: 國立東華大學; 2014.
[57] 謝蕙雯. 綬草萃取物於肝星狀細胞及小鼠之抗肝纖維化功效探討. 花蓮縣: 國立東華大學; 2014.
[58] 陳怡如. 綬草萃取液對脂肪細胞降脂及減緩高果糖水或高油脂飼料誘導脂肪肝之功效. 花蓮縣: 國立東華大學; 2015.
[59] Fan JG. Epidemiology of alcoholic and nonalcoholic fatty liver disease in China. Journal of gastroenterology and hepatology. 2013;28 Suppl 1:11-7.
[60] Balkan J, Oztezcan S, Hatipoglu A, Cevikbas U, Aykac-Toker G, Uysal M. Effect of a taurine treatment on the regression of existing atherosclerotic lesions in rabbits fed on a high-cholesterol diet. Bioscience, biotechnology, and biochemistry. 2004;68:1035-9.
[61] Zhang W, Sun Q, Zhong W, Sun X, Zhou Z. Hepatic Peroxisome Proliferator-Activated Receptor Gamma Signaling Contributes to Alcohol-Induced Hepatic Steatosis and Inflammation in Mice. Alcoholism, clinical and experimental research. 2016;40:988-99.
[62] Lieber CS. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol. 2004;34:9-19.
[63] Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. The Journal of clinical investigation. 2002;109:1125-31.
[64] Zhang J, Xue J, Wang H, Zhang Y, Xie M. Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress. Phytotherapy research : PTR. 2011;25:638-43.
[65] Crabb DW, Galli A, Fischer M, You M. Molecular mechanisms of alcoholic fatty liver: role of peroxisome proliferator-activated receptor alpha. Alcohol. 2004;34:35-8.
[66] Rukkumani R, Sri Balasubashini M, Menon VP. Protective effects of curcumin and photo-irradiated curcumin on circulatory lipids and lipid peroxidation products in alcohol and polyunsaturated fatty acid-induced toxicity. Phytotherapy research : PTR. 2003;17:925-9.
[67] Lee HI, McGregor RA, Choi MS, Seo KI, Jung UJ, Yeo J, et al. Low doses of curcumin protect alcohol-induced liver damage by modulation of the alcohol metabolic pathway, CYP2E1 and AMPK. Life sciences. 2013;93:693-9.
[68] Ajmo JM, Liang X, Rogers CQ, Pennock B, You M. Resveratrol alleviates alcoholic fatty liver in mice. American journal of physiology Gastrointestinal and liver physiology. 2008;295:G833-42.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top