跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/10 06:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宗穎
研究生(外文):Tsung-Ying Lin
論文名稱:外加磁場對高強度鋁合金鑄件晶粒細化效應及機械性質之影響研究
論文名稱(外文):Effect of magnetic field on the grain refining and mechanical properties of the high strength cast aluminum alloys
指導教授:王建義
指導教授(外文):Jian-Yih Wang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:75
中文關鍵詞:鋁銅合金鋁矽合金砂模鑄造晶粒細化磁場
外文關鍵詞:Al-Si alloyAl-Cu alloysand castinggrain refinementmagnetic field
相關次數:
  • 被引用被引用:0
  • 點閱點閱:490
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究選用A357和A201鋁合金做為研究材料,分別在砂模鑄造過程中外加不同強度交流磁場。並藉由顯微組織觀察與機械性質分析,探討外加交流磁場對砂模鑄造A357和A201機械性質影響與晶粒細化效應。
不論A357或A201在外加磁場下,隨磁場上升晶粒尺寸均隨之細化,A357及A201最小晶粒尺寸均出現在5.55 mT。而A357晶粒細化較A201明顯,原因推測為兩者初晶形狀所致,A357的初晶較於A201的初晶形狀更易於因攪拌破碎,進而提供更多的異質成核點。結果顯示不論A357或A201在未外加磁場下試片外圍和中心都有晶粒尺寸分布不均的現象,在外加磁場攪拌過後熔湯產生的質傳效應而有所改善使試片晶粒尺寸分布均勻。
A201和A357洛氏硬度測量結果均隨外加磁場強度提升而硬度提升。A201拉伸試驗顯示最大抗拉強度、降伏強度和伸長率在外加磁場上升後均提升,其中最佳機械性質表現出現在5.55 mT,並且隨著磁場攪拌效果提升使鑄材誤差明顯縮小,良率上升。而A357因隨磁場強度上升共晶區域的共晶形成導致攪拌紊亂會越嚴重進而產生空孔,磁場強度達到1.45mT時因晶粒尺寸已有初步細化,且共晶區域空孔數大幅小於較高磁場強度鑄材,使其最佳機械性質表現出現在1.45mT。
由XRD結果可發現無論是A357或是A201均因晶粒成核後因外加交流磁場而旋轉,使平行磁場面測量結果可發現α-Al相具有(111)的優選取向,在垂直磁場面測量呈現隨機取向的結果。
In this study, A357 and A201 aluminum alloys were used as the research materials, prepared by sand casting process with different intensity AC magnetic field. The effects of external magnetic field on the mechanical properties and grain refinement of A357 and A201 were investigated by microstructure observation and mechanical testing.
The minimum grain size of A357 and A201 can be obtained at 5.55 mT, and the grain refinement of A357 is more significant than A201, The reason is due to the different shape of primary crystals for both alloys. The results showed that the uneven distribution of the grain size of A357 and A201 alloys cast under magnetic field can be improved.
Rockwell hardness test results showed that the hardnesses of A201 and A357 alloys increased when increasing the external magnetic field intensity. According to the tensile test results, the ultimate tensile strength, yield strength and elongation were improved when the external magnetic field intensity was increased. The optimal mechanical properties appeared when cast at magnetic field intensity of 5.55 mT. A357 alloy cast at the higher magnetic field intensity, the lager shaking during cast could be more serious. Therefore, the holes were formed around the eutectic phases. The optimal mechanical properties appeared at magnetic field intensity of 1.45 mT. Because the grain size have been refined and therefore the numbers of holes in eutectic phases were less than the alloy cast under high magnetic intensity.
According to the XRD results, both A357 and A201 alloys displayed the higher preferred orientation of (111) α-Al phase along the direction of parallel magnetic field. The reason is proposed that the nucleation of grains were rotated by applying the magnetic field.
摘要 I
Abstract II
總目錄 III
表目錄 IV
圖目錄 V

第一章 緒論 - 1 -
1-1 前言 - 1 -
1-2 研究動機 - 3 -

第二章 文獻回顧 - 5 -
2-1 鋁合金簡介 - 5 -
2-2 鋁合金命名 - 7 -
2-3 鋁合金鑄造 - 9 -
2-4 砂模鑄造 - 11 -
2-5 鑄造晶粒細化 - 12 -
2-5-1 控制降溫速度(Thermal method) - 12 -
2-5-2 添加晶粒細化劑(Chemical method) - 14 -
2-5-3 外力攪拌 (Mechanical method) - 17 -
2-6 磁場與晶粒細化 - 20 -
2-7 晶粒尺寸對機械性質的影響 - 21 -
2-8 結晶優選取向 - 22 -
2-9 電磁場與結晶優選方向 - 22 -
2-10 外加電磁場與鑄造 - 24 -

第三章 實驗流程 - 31 -
3-1 材料製備 - 31 -
3-2-1 光學顯微鏡(Optical microscope, OM)分析 - 35 -
3-2-2 枝晶臂間距(Dendrite Arm Spacing, DAS)測量 - 37 -
3-2-3 掃描式電子顯微鏡(Scanning electron microscope,SEM)分析- 38
3-3 機械性質分析 - 39 -
3-3-1 洛氏硬度機Mitutoyo AR-10 - 39 -
3-3-2 拉伸測試 - 39 -
3-4結構分析 - 41 -
3-4-1 X光繞射( X-Ray diffraction, XRD)分析 - 41 -

第四章 結果與討論 - 43 -
4-1 A357和A201 原鑄材之顯微結構 - 43 -
4-2 A357和A201 外加交流磁場鑄材之顯微結構 - 46 -
4-3 A357和A201 外加交流磁場鑄材之機械性質 - 49 -
4-4 A357和A201 外加交流磁場鑄材之XRD分析 - 58 -
4-5 A357和A201 外加交流磁場鑄材之優選取向產生機制 - 61 -

第五章 結論 - 69 -

第六章 參考文獻 - 71 -
[1] Liu Wen-Hai, ITIS, 鋁合金潛力產品與前景分析, 2004
[2] Vadim S. Zolotorevsly, Nikolai A. Belov and Michael V. Glazoff, Casting aluminum alloys, Elseiver, 2007
[3] William F. Smith, Structure and properties of engineering alloys, 2nd edition, McGraw-Hill, 1993
[4] A. Pacz, US Patent 1387900, 1921
[5] 丁鴻遠, 鑄造鋁合金,1960
[6] Shahrooz Nafisi, Reza Ghomashchi , Effects of modification during conventional and semi-solid metal processing of A356 Al-Si alloy, Materials Science and Engineering A 415 (2006) 273–285
[7] William D. Callister, David G. Rethwisch, Materials Science and Engineering, 8th Edition SI Version, 2011
[8] Basic Process of Sand Casting, WIKIPEDIA, 2016
[9] Wenyi Liu, Wenlong Xiao, Cong Xu, Maowen Liu, Chaoli Ma, Synergistic effects of Gd and Zr on grain refinement and eutectic Si modification of Al-Si cast alloy , Materials Science and Engineering A 693 (2017) 93-100
[10] Chang-lin YANG, Yuan-bing LI, Bo DANG, He-bin LÜ, Feng LIU, Effects of cooling rate on solution heat treatment of as-cast A356 alloy, Transactions of Nonferrous Metals Society of China 25(2015) 3189−3196
[11] SUN Shao-chun, YUAN Bo, LIU Man-ping, Effects of moulding sands and wall thickness on microstructure and mechanical properties of Sr-modified A356 aluminum casting alloy, Transactions of Nonferrous Metals Society of China 22(2012) 1884_1890
[12] G. K. Sigworth,T. A. Kuhn, Grain Refinement of Aluminum Casting Alloys, Modern Casting, January 2008
[13] A. K. Prasada Rao, K. Das, B. S. Murty and Chakra-Borty, Microstructural features of as-cast A356 alloy inoculated with Sr, Sb modifiers and Al–Ti–C grain refiner simultaneously,Materials Letters 62-2, p.273-275, 2008
[14] Lim Ying Pio, Wang Chan Chin, Enhancement of TiB Grain Refining Effect on A356 Gravity Die Casting with the Addition of Yttrium , Materials Science and Applications, Vol.3 No.10, October 2012
[15] Guang-lei LIU , Nai-chao SI , Shao-chun SUN , Qin-fang WU, Effects of grain refining and modification on mechanical properties and microstructures of Al−7.5Si−4Cu cast alloy ,Transactions of Nonferrous Metals Society of China 24(2014) 946−953
[16] Dan Luo, Hui-Yuan Wang , Zi-Teng Ou-Yang, Lei Chen, Jin-Guo Wang, Qi-Chuan Jiang, Microstructure and mechanical properties of Mg–5Sn alloy fabricated by a centrifugal casting method, Materials Letters 116(2014) 108-111
[17] X. Jiana , H. Xua , T.T. Meeka , Q. Han , Effect of power ultrasound on solidification of aluminum A356 alloy, Materials Letters 59 (2005) 190 – 193
[18] P. Appendino, G. Crivellone, C. Mus, S. Spriano, Dynamic solidification of sand-cast aluminum alloys, Metallurgical Science and Technology, p.27-32, 20, 1, 2002
[19] Hong-min GUO, Ai-sheng ZHANG , Xiang-jie YANG , Ming-ming YAN, Grain refinement of Al−5%Cu aluminum alloy under mechanical vibration using meltable vibrating probe, Transactions of Nonferrous Metals Society of China 24(2014) 2489−2496
[20] Charles Vives, Effects of forced electromagnetic vibration during the solidification of aluminum alloys, Metallurgical and Materials Transactions B, Volume 27, Issue 3, (1996) 457-464
[21] P. A. Davison, Magneto-hydrodynamics in materials processing, Annual Review of Fluid Mechanics ,Vol.31 1999, 273-300
[22] B. Fragoso, H. Santos, Effect of rotating magnetic field at the microstructure of an A354, Journal of Materials Research and Technology, 2013, 2, 100-109
[23] Niels Hansen, Hall-Petch relation and boundary strengthening, Svripta Meterialia 51, p.801-806, 2004
[24] Reza Abbaschian, Lara Abbaschian, Robert E. Reed-Hill, 4th edition Physical Metallurgy Principles, 8-9
[25] D.A.Molodov , P.J.Konijnenberg. Grain boundary and grain structure control through application of a high magnetic field, Scripta Materialia, 54 (2006) 977-981
[26] T. Watanabe, S. Tsurekawa, X. Zhao, L. Zuo, Grain boundary engineering by magnetic field application , Scripta Materialia, 54 (2006) 969-975
[27] Z. M. Ren, Progress in Research of Solidification of Metals under a Strong Magnetic Field, Materials China, 2010; 29(6): 40-49
[28] BAN Chunyan, CHEN Dandan, HAN Yi , BA Qixian, CUI Jianzhong , Effect of high magnetic field on solidification structure of Al–2.89%Fe alloy, Acta Metallurgica Sinica,2008; 44: 1224-1230
[29] Chunjiang Wang, Qiang Wang, Zhongying Wang, Hutian Li, Keiji Nakajima, Jicheng He. Phase alignment and crystal orientation of Al3Ni in Al–Ni alloy by imposition of a uniform high magnetic field, Journal of Crystal Growth 310 (2008) 1256–1263
[30] Beijiang Zhang , Jianzhong Cui, Guimin Lu. Effects of low-frequency electromagnetic field on microstructures and macrosegregation of continuous casting 7075 aluminum alloy .Materials Science and Engineering A 355 (2003) 325-330
[31] Zhihao Zhao, Jianzhong Cui, Jie Dong, Zhefeng Wang, Beijiang Zhang, Effect of low-frequency magnetic field on microstructures of horizontal direct chill casting 2024 aluminum alloy, Journal of Alloys and Compounds 396 (2005) 164–168
[32] Yubo Zuo, Jianzhong Cui, Jie Dong, Fuxiao Yu. Effects of low frequency electromagnetic field on the as-cast microstructures and mechanical properties of superhigh strength aluminum alloy .Materials Science and Engineering A 408 (2005) 176-181
[33] Tian-jiao Luo, Huan-ming Ji, Jie Cui, Fu-ze Zhao, Xiao-hui Feng, Ying-ju Li, Yuan-sheng Yang , As-cast structure and tensile properties of AZ80 magnesium alloy DC cast with low-voltage pulsed magnetic field. Transactions of Nonferrous Metals Society of China 25(2015) 2165-2171
[34] R. Haghayeghi, P. Kapranos, Grain refinement of AA7075 alloy under combined magnetic fields, Materials Letters 151 (2015) 38–40
[35] 亥姆霍茲線圈磁場(Magnetic fields of Helmholtz coil),戴明鳳,施宙聰, 2014
[36] Dendrite arm spacing , Geisserei Lexikon,2017
[37] 朱耀明, 單晶鋁中磁化現象的方向性對其鋁的磁化率值影響,儀表材料, 1982; 13(6): 25
[38] Z. Sun, M. Guo, J. Vleugels, O. Van Der Biest, B. Blanpain , Strong static magnetic field processing of metallic materials: A review , Current Opinion in Solid State and Materials Science. 16 (2012) 254-267
[39] A.E.Mikelson , Ya.Kh Karklin, control of crystallization processes by means of magnetic fields, Journal of Crystal Growth. 52 (1981) 524-529
[40] ZHONG Hua , REN Zhongming, LI Chuanjun, ZHONG Yunbo, XUAN Weidong ,WANG Qiuliang, Texture formation and grain boundary characteristic of Al-4.5Cu alloys directionally solidified under high magnetic field. Acta Metallurgica Sinica , Vol.51 No.4 (2015) 473-482
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top