跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/18 11:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘家領
研究生(外文):Jia-Lin Pan
論文名稱:Mg97Zn2RE1 鎂合金鑄造材之顯微結構與高溫機械性質研究
論文名稱(外文):Study on the Microstructures and high temperature Mechanical Properties of cast Mg97Zn2RE1 Alloy
指導教授:王建義
指導教授(外文):Jian-Yih Wang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:83
中文關鍵詞:稀土鎂合金高溫機械性質顯微結構散佈強化
外文關鍵詞:rare earth magnesium alloyshigh temperature mechanical propertiesmicrostructuredispersion strengthening
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為拓展鎂合金於3C產品與運輸工具上之應用,添加微量高純度稀土元素( Rare earth) Ce 及 La,藉此提高輕金屬鎂合金於室溫、高溫的機械性質,並以鑄造配置Mg97Zn2La1、Mg97Zn2Ce1與Mg97Zn2La0.5Ce0.5合金。鑄造材會產生大量樹枝狀晶( dendrite )結構,造成室溫拉伸強度明顯不足,降伏強度只有120MPa左右,本研究以滾軋的方式給予材料大量變形量,使枝狀晶結構能斷裂並分散於合金中,在773K下軋延量可達到90%,使合金室溫降伏強度提升至300MPa以上。經光學顯微鏡( Optical Microscope )下觀察三者顯微組織,鎂相以樹枝晶結構組成,並在晶界上形成二次相,藉由維克氏硬度機測試,皆可發現材料之二次相硬度高於鎂基材硬度約4倍,此為三種合金高強度之主因,強化機制屬於散佈強化,經XRD分析結果得知,此類二次相為Mg12Ce1及Mg12La1;並計算經高溫滾軋673K下50%、723K下70%及773K下90%最大軋延量比較二次相分散程度對機械性質之變化。
In order to expand the application of magnesium alloys in 3C products and the transportation field, small amount of high purity rare-earth element added magnesium alloys were investigated. In this research, the Mg97Zn2Ce1, Mg97Zn2La1 and Mg97Zn2Ce0.5La0.5 alloy billets were prepared by vacuum casting. Due to the large quantity of huge dendrite structures and large size of secondary phases, the tensile yield strengths of all alloys were low around 120MPa. In this study, hot rolling processes combining the different rolling temperatures and rolling reduction were adopted for trying to refine the secondary phases. After hot rolling at 773K with 90% reduction, the yield strength of magnesium alloy can be increased to more than 300MPa. The microstructures were observed by optical microscope. The magnesium matrix displayed the large dendritic structure, while the secondary phases existed at the grain boundary of magnesium. According to the nano-indentation test result, the second phase possesses much higher hardness than the matrix. As a consequence, the strengthening mechanisms were proposed as the dispersion strengthening. In the XRD results, the secondary phases were identified as Mg12Ce1 and Mg12La1. The dispersion levers of different hot rolling processes were measured, and compared with the mechanical properties.
總目錄
摘要 I
ABSTRACT II
總目錄 III
表目錄 V
圖目錄 VI
第一章 緒論 1
1-1 前言 1
1-2研究動機 3
第二章 文獻回顧 5
2-1鎂合金簡介 5
2-2 合金元素的添加對鎂合金性質之影響 8
2-2-1 鋅(Zn)元素 8
2-2-2 稀土元素(Rare earth, Re) 9
2-2-2-1 稀土元素的介紹 9
2-2-2-2 稀土符號 10
2-2-3 稀土元素添加之影響 9
2-2-4 稀土鎂合金及其應用 12
2-2-4-1 Mg-Al-RE (AE系)合金 12
2-2-4-2 Mg-RE-Zr(EK系)合金 12
2-2-4-3 Mg-Y-RE(WE系)合金 13
2-2-4-4 Mg-Zn-RE(EZ系)合金 14
2-2-5 Mg-Zn-Y合金 14
2-2-6 Mg-Zn-Ce及Mg-Zn-La 合金 18
2-2-7 鑄造材鎂合金樹枝狀晶粒結構 (dendritic grains) 20
2-3熱機處理對鎂合金的影響 22
2-3-1 鎂合金晶粒細化 22
2-3-2 鎂合金熱機處理細化晶粒 22
2-4 分散強化 26
2-4-1散佈程度(DL, dispersion level) 26
2-4-2 高溫軋延(Hot rolling) 26
第三章 實驗方法 29
3-1 材料製備 29
3-1-1 鎂合金熔煉(Melting) 29
3-1-2 感應耦合電漿質譜分析儀(ICP-MS) 30
3-1-3 均質化 31
3-1-4 熱軋延製程(Hot rolling) 32
3-2 顯微組織觀察 33
3-2-1 光學顯微鏡(Optical microscope, OM)分析 33
3-2-2 掃描式電子顯微鏡(Scanning electron microscope, SEM)分析 35
3-3 機械性質分析 36
3-3-1 維克氏硬度機Mitutoyo HM-101 36
3-3-2 拉伸測試 36
3-4結構分析 39
3-4-1 X光繞射( X-Ray diffraction, XRD)分析 39
第四章 實驗結果 41
4-1 MG97ZN2CE1、MG97ZN2LA1、MG97ZN2CE0.5LA0.5 鑄造材經均質化後分析 41
4-1-1 顯微組織觀察 41
4-1-2 X-ray 繞射圖譜分析 45
4-1-3 室溫機械性質分析 46
4-1-4 高溫機械性質分析 48
4-1-5 鑄造材拉伸破斷面觀察 49
4-2 MG97ZN2CE1、MG97ZN2LA1、MG97ZN2CE0.5LA0.5 合金最大軋延率下熱軋延之分析 53
4-2-1 顯微組織觀察 53
4-2-2 X-ray 繞射圖譜分析 57
4-2-3 室溫機械性質分析 59
4-2-4 高溫機械性質分析 61
4-2-5 熱軋延後材料拉伸破斷面 64
第五章 結論 75
第六章 參考文獻 77
[1] 廖銘枝、陳元隆,「鎂合金表面化學處理劑之應用演進」,鎂合金產業專欄,2004年2月24期。
[2] 陳錦修,「鎂合金在汽車工業之應用」,鎂合金產業專欄-工業材料雜誌,2004年6月186期。
[3] 蔡辛甫,「採用鎂合金材質的輕量化效果」,鎂合金產業通訊,2006年2月32期。
[4] 邱垂泓,「鎂合金產業資訊」,鎂合金產業通訊-工業材料雜誌,2003年8月200期。
[5] K.Hirano, H. Oikawa and K. Ikbeb, Science and Engineering of Light Metals, Light Metals, Tokyo, p. 77.(1991)
[6] M.Mabuchi, K. Kubota, K. Higashi, Tensile strength, ductility and fracture of magnesium-silicon alloys, Journal of Materials Science. Vol.31, Issue 6, pp. 1529-1535.(1996)
[7] M.Mabuchi, K. Kubota, K. Higashi. New Recycling Process by Extrusion for Machined Chips of AZ91 Magnesium and Mechanical Properties of Extruded Bars. Materials Transactions, JIM, Vol.36, Issue 10 , pp. 1249-1254. (1995)
[8] L. L. Rokhlin,Structure and properties of alloys of the Mg-REM system, Metal Science and Heat Treatment . Vol. 48, Issue 11, pp, 487-490. (2006)
[9] 翁仁斌, 「鎂合金固相回收之研究」,中華大學機械與航太工程研究所,2006,5月,碩士論文。
[10] 蔡辛甫,「鎂合金產業的現況與新發展」,工業材料雜誌,2009年2月266期。
[11] 日本鎂合金協會,鎂合金基礎知識http://www.magnesium.or.jp/index.html
[12] 鍾仕豪,「超輕镁理合金的拉伸與疲勞特性研究」,國立中央大學機械工程學系,2011年6月,碩士論文。
[13] 王建義, 「鎂合金板材之壓型 (Press Forming) 加工技術」,鎂合金產業專欄,2001年2月。
[14] 楊俊彬,「鎂合金之鍛造製程與外殼段件研究開發」,鎂合金產業專欄,2005年2月。
[15] M. Shahzad, L. Wagner, Microstructure development during extrusion in a wrought Mg–Zn–Zr alloy. Scripta Materialia. Vol. 60, Issue 7, pp 536-538. (2009)
[16] L. Shepeleva, M. Bamberger, Microstructure of high pressure die cast AZ91D modified with Ca and Ce. Materials Science and Engineering: A. Vol. 425, Issues 1-2, pp 312-317. (2006)
[17] S. Kleiner, O. Beffort, P.J. Uggowitzer, Microstructure evolution during reheating of an extruded Mg–Al–Zn alloy into the semisolid state. Scripta Materalia. Vol. 51, Issue 5, pp 405-410. (2004)
[18] M.Y. Zheng, K. Wua, M. Liang, S. Kamado, Y. Kojima. The effect of thermal exposure on the interface and mechanical properties of Al18B4O33w/AZ91 magnesium matrix composite. Materials Science and Engineering: A. Vol. 372, Issues 1-2, pp 66-74.(2004)
[19] 鄭子樵、李紅英,新材料與應用技術叢書「稀土功能材料」,2006.
[20] T.E. Leontis, in F.H. Spedding and A.H. Daane (eds.), The Rare Earths, Wiley & Sons, New York. (1961)
[21] D.J. Sakkinen, Physical Metallurgy Of Magnesium Die Cast Alloys, SAE Paper 940779. (1994)
[22] S.U. Gui-hua, Z. Liang, C. Li-ren, L. Yong-bing, C. Zhan-yi. Microstructure and mechanical properties of Mg-6Al-0.3Mn-xY alloys prepared by casting and hot rolling. Transactions of Nonferrous Metals Society of China. Vol. 20, Issue 3, pp 383-389. (2010).
[23] M.O. Pekguleryuz, A.A. Kaya, Creep Resistant Magnesium Alloys for Powertrain Applications. Advanced Engineering Materials. Vol. 5, Issue 12, pp 866-878. (2003)
[24] M. Gupta, M.L. Nai, Magnesium alloys, and Magnesium Composites. WILEY. (2011)
[25] Die castability and property evaluation of AE alloys for drive train components, in: Proceedings of the 13th Magnesium Automotive and End User Seminar, Aalen, akke , 2005 B.
[26] K. Maruyama, M. Suzuki, H. Sato, Creep strength of magnesium-based alloys. Metallurgical and Materials Transactions A. Vol. 33, Issue 3, pp875-882. (2002)
[27] L. Gao, R.S. Chen, E.H. Han, Solid solution strengthening behaviors in binary Mg-Y single phase alloys. Journal of alloys and Compounds. Vol. 472, Issues 1-2. pp 234-240. (2009)
[28] H. Karimzadeh, J. M. Worrall, R. Pilkington and G.W. Lorimer, Proc. Of the Int. Conf. on Magnesium Technology, ed. by C. Baker, G.W. Lorimer and W. Unsworth, pp. 138-141.(1987)
[29] I.A. Anyanwu, S. Kamado, Y. Kojima, Creep Properties of Mg-Gd-Y-Zr Alloys. Materials Transactions. Vol. 42 Issue 7, pp. 1212-1218. (2001)
[30] T. Mohri, M. Mabuchi, N. Saito, M. Nakamura, Microstructure and mechanical properties of a Mg-4Y-3RE alloy processed by thermo-mechanical treatment. Materials Science and Engineering: A. Vol. 257, Issue 2, pp 287-294. (1998)
[31] Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto, Rapidly Solidifield Powder Metallurgy Mg97Zn1Y2 Alloys with Excellent Tensile Yield Strength above 600MPa. Materials Transactions, Vol. 42, Issue 7, pp 1172-1176. (2001)
[32] A.Inoue, Y. Kawamura, M. Matsushita, K. Hayashi, J. Koike .Nove1 hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system [J ].Mater Res. Soc16, (2001)
[33] M. Nishida, Y. Kawamura, T. Yamamuro, Formation process of unique microstructure in rapidly solidified Mg97Zn1 Y2 alloy, Materials Science and Engineering A. Vol. 375–377. Pp 1217–1223. (2004)
[34] T Itoi, T. Seimiya, Y. Kawamura, M. Hirohashi. Longer period stacking structures observed in Mg97Zn1Y2 alloy. Scripta Materialia. Vol.51, Issue 2, pp107-111. (2004)
[35] K. Amiya, O. Tetsu, A. Ionoue, Long-Period Hexagonal Structures in Melt-Spun Mg97Ln2Zn1(Ln=Lanthanide Metal) Alloys. Materials Transactions, Vol. 44, Issue 10, pp 2151-2156. (2003)
[36] K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Plastic deformation behavior of Mg97Zn1Y2 extruded alloys. Transactions of Nonferrous Metals Society of China. Vol. 20, Issue 7, pp 1259-1268. (2010)
[37] M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Effect of multimodal microstructure evolution on mechanical properties of Mg–Zn–Y extruded alloy. Acta Material. Vol. 59, Issue 9, pp 3646-3658. (2011)
[38] Y. Kawamura, M. Yamasaki, Formation and Mechanical Properties of Mg97Zn1RE2 Alloys with Long-Period Stacking Ordered Structure. Materials Transactions, Vol. 48, Issue 11, pp 2986-2992. (2007)
[39] Y. Kawamura, T. Morisaka, M.Yamasaki, Structure and Mechanical Properties of Rapidly Solidified Mg97Zn1RE2 Alloys Mater. Sci. Forum, pp 419-422.(2003)
[40] Y. Ming-bo, W. De-yong, H. Meng-Dan, P. Fu-sheng. As-cast microstructures and mechanical properties of Mg-4Zn-xY-1Ca(x=1.0, 1.5, 2.0, 3.0)magnesium alloys Nonferrous Met, Soc. China 25, pp 721-731. (2015)
[41] A. Bussiba, A.B. Artzy, A. Shtechman, S. Ifergan and M. Kupiec. Grain refinement of AZ31 and ZK60 Mg alloys—towards superplasticity studies. Materals Science and Engineering: A, Vol. 302, Issue 1, pp 56–62. (2001)
[42] K. Kubota, M. Mabuchi, K. Higashi. Review Processing and mechanical properties of fine-grained magnesium alloys. Journal of Materials Science. Vol. 34, Issus 10, pp 2255–2262.( 1999)
[43] H. Watanabe, H. Tsutsui, T.Mukai, K. Ishikawa, Y. Okanda, M. Kohzu, K. Higashi. Grain Size Control of Commercial Wrought Mg-Al-Zn Alloys Utilizing Dynamic Recrystallization. Materials Transactions, Vol.42, Issue 7, pp 1200-1205. (2001)
[44] D. V. Wilson ,J. A. Chapman. Effects of preferred orientation on the grain size dependence of yield strength in metals. Phil. Mag. , vol. 8, p. 1543.( 1963)
[45] M. Mabuchi, , K. Ameyama, H. Iwasaki, K. Higashi. Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries. Acta Materialia. Vol. 47, Issue 7, p.2047–2057.(1999)
[46] H. Watanabe. T. Mukai. M. Mabuchi. K. Higashi. High-strain-rate superplasticity at low temperature in a ZK61 magnesium alloy produced by powder metallurgy. Vol. 41, Issue 2, p.209–213.(1999)
[47] Yongjun Chen. Qudong Wang. Jianguo Peng. Chunquan Zhai. Wenjiang Ding. Effects of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy. Journal of Materials Processing Technology. Vol. 182, Issues 1-3, p.281–285.(2007)
[48] D. M. Lee. B. K. Suh. B. G. Kim. J. S. Lee. C. H. Lee.. Fabrication, microstructures, and tensile properties of magnesium alloy AZ91/SiCp composites produced by powder metallurgy. Materials Science and Technology. Vol. 13,Issue 7,p.590-595. (1997)
[49] Mamoru Mabuchi. Kohei Kubota. Kenji Higashi. New Recycling Process by Extrusion for Machined Chips of AZ91 Magnesium and Mechanical Properties of Extruded Bars. Materials Transactions, JIM. Vol.36,p.1249-1254.(1995)
[50] Li Jin. Dongliang Lin. Dali Mao. Xiaoqing Zeng. Wenjiang Ding. Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion. Materials Letters. Vol.59, Issue 18, p. 2267-2270.(2005)
[51] M. Mabuchi, H. Iwasaki, K. Yanase, K. Higashi. Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE. Scripta Materialia. Vol. 36, Issue 6,p.681-686.(1997)
[52] Tien-Chan Chang, Jian-Yi Wang, Chia-Ming O, Shyong Lee. Grain refining of magnesium alloy AZ31 by rolling. Journal of Materials Processing Technology. Vol.140, Issues 1–3, p.588-591.(2003)
[53] Yi Liu , Xin Wu. A Microstructure Study on an AZ31 Magnesium Alloy Tube after Hot Metal Gas Forming Process. Journal of Materials Engineering and Performance. Vol. 16, Issue 3, p.354–359.(2007)
[54] T. Mukai, T. G. Nieh, H. Iwasaki & K. Higashi. Superplasticity in doubly extruded magnesium composite ZK60/SiC/17p. Materials Science and Technology. Vol.14,Issue 1,p.32-35.(1998)
[55] Terence G. Langdon. Seventy-five years of superplasticity: historic developments and new opportunities. Journal of Materials Science. Vol.44,Issue 22,p.5998.(2009)
[56] M. Sanjari and S.F. Farzadfar, Microstructure and texture evolution of Mg3Zn3Ce magnesium alloys sheets and associated restoration mechanisms during annealing, Materials Science and Engineering: A, pp191-202. (2013)
[57] 劉楚明、朱秀榮、周海濤,鎂合金相圖集,2006年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top