跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/19 04:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳紹維
研究生(外文):Shao-Wei Chen
論文名稱:利用多元醇法在多孔陶瓷成長奈米銀及白金之製備
論文名稱(外文):Preparation and Growth Nanosilver and Nanoplatinum Particles in Porous Ceramics by Polyol Synthesis Method
指導教授:張文固
指導教授(外文):Wen-Ku Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:90
中文關鍵詞:多孔陶瓷多元醇法奈米銀奈米鉑
外文關鍵詞:porous ceramicpolyol synthesis methodnano silvernano platinum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在利用多元醇法將多孔陶瓷沉浸於含銀或鉑的前驅物溶液中,藉由異質界面成核成長的機制,使銀及鉑的奈米顆粒在多孔陶瓷的表面及孔洞中成核成長。本研究探討旨在四種不同平均孔徑(23µm、7µm、3.2µm、1.2µm)的多孔陶瓷,於不同反應時間、溫度、濃度等情形下添加奈米銀(鉑),其在多孔陶瓷中成核成長的狀況。本實驗分為兩個部分:(1)各種孔隙多孔陶瓷的製備與物化性分析;(2)在多孔陶瓷內成核成長銀及鉑奈米粒子的製備與分析。
在多孔陶瓷的檢測中,發現A樣品陶瓷因為添加過多比例的黏著劑及水份而影響到其重量損失率以及尺寸收縮率,開孔體積比例相對的較低,影響到視氣孔率以及氣體通過的效率,使透氣率略低於孔徑較小的B樣品。
於多孔陶瓷成長奈米銀的研究中,觀測到陶瓷孔徑越大,其成長奈米銀粒子的附著效果越好;在反應溫度140℃、反應時間2小時、濃度比例為1且添加PVP (分子量10,000) 的情況下附著情況最好,銀粒子散佈廣且粒徑均一,平均粒徑約為55nm左右。而在多孔陶瓷成長奈米鉑的研究中,可以發現硝酸鈉的添加對鉑粒子的成長率有很顯著的提升,與PVP保護劑有相輔相成的效果;於反應溫度110℃、反應時間3小時、濃度比例為3.5的實驗參數下,其附著情形最好,平均粒徑約為30nm左右,其形貌傾向於形成顆粒或球狀。
The research is to immerse the porous ceramic into the precursor solution containing silver or platinum by using the polyol synthesis method, and the nucleation of silver and platinum nanoparticles into surface and pores of the porous ceramic by the mechanism of heterogeneous nucleation. The research is mainly discussed the situation of porous ceramics with four different pore sizes ( 23 μm, 7 μm, 3.2 μm, 1.2 μm) adding by nanosilver ( nanoplatinum )at different reaction times, temperature and concentration. The experiment is divided into two parts :
(1) Preparation and analysis of the porous ceramics with four different pore size (2) Preparation and analysis of growth nanosilver and nanoplatinum in porous ceramics.
In the detection of porous ceramics, it was found that the weight loss rate and the shrinkage rate of A sample ceramic were affected by adding too much of the adhesive and moisture, and the ratio of the volume of open pores was relatively low, affecting the efficiency of porosity and gas permeability, cause the gas permeability slightly lower than B sample.
In the research of porous ceramic grown silver nanoparticles, the higher pore size of ceramic was observed, the better effect of growth of silver nanoparticles. At the reaction temperature of 140℃, reaction time of 2 hours, concentration ratio of 1 and PVP (molecular weight 10,000) in the case of the best situation to nucleation, silver particles are widely dispersed and size uniform, the average particle size of about 55nm. While the study of porous ceramic grown platinum nanoparticles, it can be found that the addition of sodium nitrate has a significant effect on the growth rate of platinum particles; and complementary effect to PVP. At the reaction temperature of 110℃, reaction time of 2 hours, concentration ratio of 3.5 in the case of the best situation for platinum to nucleation, the average particle size of about 30nm, its morphology tends to form spherical.
誌謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XVII
一、緒論 1
1.1 前言 1
1.2 研究動機與目的 3
二、基礎理論及文獻回顧 5
2.1 多孔陶瓷 5
2.1.1 多孔陶瓷原料介紹 6
2.1.2 多孔陶瓷的製備 12
2.2 奈米銀的應用 16
2.3 奈米鉑的應用 18
2.4 金屬奈米粒子製備方式 19
2.4.1 多元醇法製備 20
2.5 材料載體 24
三、實驗方法與步驟 25
3.1 實驗藥品與設備 25
3.1.1 藥品 25
3.1.2 設備與儀器 26
3.2 實驗步驟 27
3.2.1 粉體製備 27
3.2.2 球磨與乾燥 28
3.2.3 研磨與過篩 28
3.2.4 造粒與壓錠 28
3.2.5 燒結 28
3.2.6 多元醇法製備奈米銀粒子 30
3.2.7 多元醇法製備奈米鉑粒子 30
3.3 試片分析 32
3.3.1 陶瓷孔徑代號 32
3.3.2 物理性質分析 33
3.3.3 透氣率測試 34
3.4 量測儀器 36
3.4.1 X光繞射儀(X-ray Diffraction, XRD) 36
3.4.2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 37
3.4.3 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy, FE-SEM) 37
3.4.4 能量散佈光譜儀(Energy Dispersive Spectroscopy, EDS) 37
四、結果與討論 39
4.1 多孔陶瓷基本性質 39
4.1.1 重量損失率 39
4.1.2 尺寸收縮率 40
4.1.3 視氣孔率 41
4.1.4 透氣率 42
4.2 銀奈米粒子成長與附著分析 43
4.2.1 銀奈米粒子 43
4.2.2 不同進料速度之影響 46
4.2.3 銀奈米粒子在不同樣品陶瓷的附著分析 47
4.2.4 不同PVP分子量的影響 50
4.2.5 不同反應時間的影響 52
4.2.6 不同濃度比例的影響 54
4.2.7 不同反應溫度的影響 57
4.2.8 不同製程的影響 61
4.3 鉑奈米粒子成長與附著分析 65
4.3.1 鉑奈米粒子 65
4.3.2 硝酸鈉及PVP保護劑對鉑粒子成長的影響 67
4.3.3 硝酸鈉及PVP保護劑對銀粒子成長的影響 70
4.3.4 不同反應時間的影響 73
4.3.5 不同濃度比例的影響 76
4.3.6 不同反應溫度的影響 79
五、結論 83
參考文獻 85
[1] American Energy Independence, “Hydrogen Peroxide”, http://www.americanenergyindependence.com/peroxide.aspx
[2] 台灣環境資訊協會 – 環境資訊中心, ”衛星推進劑”, http://e-info.org.tw/node/86593
[3] 肖定全, “陶瓷材料”, 新文京開發出版社, 2003.
[4] 蔡信行, “化工製程及材料”, 新文京開發出版社, 2005.
[5] 陳美君, “高氣體透過率陶瓷之製備與應用”, 國立東華大學碩士論文, 2013.
[6] 劉培生, “多孔材料引論二版”, 清華大學出版社, 2012.
[7] 楊顯榮, “工程材料學”, 全華圖書出版社, 2011.
[8] 韓跃新、王澤紅、印萬忠、袁致濤, “礦物材料”, p.195~199, p.442~445, 2006.
[9] 朱世富, “材料科學與工程”, 新文京開發出版社, 2002.
[10] McGraw-Hill, “Clay Mineral”, 1968.
[11] 李權家, “管狀無機膜製備及其於化學機械研磨廢水處理之應用”, 國立中山大學碩士論文, 2006.
[12] Jiang Guang-Peng, Gao Ji-Qiang, Koichi Niihara, “Characterization of porous silicon nitride ceramics using bentonite as binder and sintering additive”, Materials characterization, vol. 60, p. 456-460, 2009.
[13] Minoru Takahashi, Masayoshi Fuji, Hiroaki Takegami, “Opportunities of porous ceramics fabricated by gelcasting in mitigating environmental issues”, Journal of the European Ceramic Society, vol. 29, p. 823-828, 2009.
[14] H. Y. Wu Lina, Wang Zhijiang, Liu Li, “Controlled fabrication of porous Al2O3 ceramic by N,N'-dimethylformamide -based gel casting”, Scripta Materialia, vol. 62, p. 602-605, 2010.
[15] Z. X. He Xing, Su Bo, “3D interconnective porous alumina ceramics via direct protein foaming”, Materials Letters, vol. 63, p. 830-832, 2009.
[16] K. W. Y. Ji Hyung Bin, Yang Tae Young, Yoon Seog Young, Kim Byung Kyu, Park Hong Chae, “Freeze casting of aqueous coal fly ash/alumina slurries for preparation of porous ceramics”, Journal of Physics and Chemistry of Solids, vol. 71, p. 503-506, 2010.
[17] H. L. Zhang Yumin, Han Jiecai, Jiang Zehui, “Freeze casting of aqueous alumina slurries with glycerol for porous ceramics”, Ceramics International, vol. 36, p. 617-621, 2010.
[18] T. Y. F. Zhao K, Qin Y.S, Luo D.F, “Polymer template fabrication of porous hydroxyapatite scaffolds with interconnected spherical pores”, Journal of the European Ceramic Society, vol. 31, p. 225-229, 2010.
[19] B. D. D. Silva S.A, Melo F.C.L, Thim G.P, “Preparation of a reticulated ceramic using vegetal sponge as templating”, Ceramics International, vol. 35, p. 1575-1579, 2009.
[20] R. G. Osman Şan, Cem Özgür, “Purification of diatomite powder by acid leaching for use in fabrication of porous ceramics”, Int. J. Miner. Process, vol. 93, p. 6-10, 2009.
[21] Fangli Yu, Jianfeng Yang, Anneke(C.A.)Delsing, Bert(H.T.)Hintzen, “Preparation, characterization and luminescence properties of porous Si3N4 ceramics with Eu2O3 as sintering additive”, Journal of Luminescence, vol. 130, p. 2298-2304, 2010.
[22] Radomir Sokolar, Lenka Smetanova, “Dry pressed ceramic tiles based on fly ash-clay body: Influence of fly ash granulometry and pentasodium triphosphate addition”, Ceramics International, vol. 36, p. 215-221, 2010.
[23] In-Hyuck Song, Hai-Doo Kim, Young-Wook Kim, “Processing of
microcellular silicon carbide ceramics with a duplex pore structure”, Journal of the European Ceramic Society, vol. 30, p.2671-2676, 2010.
[24] 周更生、李賢學、高振裕、盧育杰, “功能性粉末:奈米銀”, p.32, 2006.
[25] Virender K. Sharma, Ria A. Yngard, “Silver nanoparticles : Green synthesis and their antimicrobial activities”, Advances in Colloid and Interface Science, vol. 145, p. 83-96, 2009.
[26] Aftab Ahmad, Yun Wei, Fatima Syed, Kamran Tahir, Arifullah Khan,” The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles”, Microbial Pathogenesis, vol. 102, p. 133-142, 2017.
[27] Thawatchai Maneerung, Seiicji Tokura, Ratana Rujiravanit, “Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing”, Carbohydrate Polymers, vol. 72, p. 43-51, 2008.
[28] 石川正道, “奈米科技與產業導論”, 普林斯頓國際有限公司, 2002.
[29] Mónica Martins, Cláudia Mourato, Sandra Sanches, João Paulo Noronha, M.T. Barreto Crespo, Inês A.C. Pereira, “Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds”, Water Research , vol. 108, p. 160–168, 2017.
[30] Jianhong Zhu, W. Thomas Leach, Scott K.Stanley, John G. Ekerdt, “Growth of high-density Si nanoparticles on Si3N4 and SiO2 thin films by hot-wire chemical vapor deposition”, J. Appl. Phys. 92, p. 4695, 2002.
[31] 葉瑞銘, “奈米科技導論”, 高立圖書出版社, 2004.
[32] Hidefumi Hirai, Yukimichi Nakao, Naoki Toshima, “Preparation of colloidal transition metals in polymers by reduction with alcohols or ethers”, J. Macromolecular Sci. Chem., vol. A13, No. 5, pp. 633-649, 1979.
[33] 張嘉倫, “Au、Ag、Cu 及其合
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top