|
1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-9.
2. Lerf, A.; He, H.; Forster, M.; Klinowski, J., Structure of Graphite Oxide Revisited‖. The Journal of Physical Chemistry B 1998, 102 (23), 4477-4482.
3. Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H., Graphene-based materials: synthesis, characterization, properties, and applications. Small 2011, 7 (14), 1876-902.
4. Hamberg, I.; Granqvist, C. G., Evaporated Sn‐doped In2O3films: Basic optical properties and applications to energy‐efficient windows. Journal of Applied Physics 1986, 60 (11), R123-R160.
5. Ni, J.; Yan, H.; Wang, A.; Yang, Y.; Stern, C. L.; Metz, A. W.; Jin, S.; Wang, L.; Marks, T. J.; Ireland, J. R.; Kannewurf, C. R., MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes. J Am Chem Soc 2005, 127 (15), 5613-24.
6. Wen, S. J.; Campet, G.; Portier, J.; Couturier, G.; Goodenough, J. B., Correlations between the electronic properties of doped indium oxide ceramics and the nature of the doping element. Materials Science and Engineering: B 1992, 14 (1), 115-119.
7. Huang, H.; Yue, Z. K.; Li, G.; Wang, X. M.; Huang, J.; Du, Y. K.; Yang, P., Heterostructured composites consisting of In2O3 nanorods and reduced graphene oxide with enhanced interfacial electron transfer and photocatalytic performance. Journal of Materials Chemistry A 2014, 2 (47), 20118-20125.
8. Xu, X.; Wu, T.; Xia, F.; Li, Y.; Zhang, C.; Zhang, L.; Chen, M.; Li, X.; Zhang, L.; Liu, Y.; Gao, J., Redox reaction between graphene oxide and In powder to prepare In2O3/reduced graphene oxide hybrids for supercapacitors. Journal of Power Sources 2014, 266, 282-290.
9. Liu, J.; Ke, J.; Li, D.; Sun, H.; Liang, P.; Duan, X.; Tian, W.; Tade, M. O.; Liu, S.; Wang, S., Oxygen Vacancies in Shape Controlled Cu2O/Reduced Graphene Oxide/In2O3 Hybrid for Promoted Photocatalytic Water Oxidation and Degradation of Environmental Pollutants. ACS Appl Mater Interfaces 2017, 9 (13), 11678-11688.
10. Appenzeller, J.; Knoch, J.; Bjork, M. T.; Riel, H.; Schmid, H.; Riess, W., Toward Nanowire Electronics. IEEE Transactions on Electron Devices 2008, 55 (11), 2827-2845.
11. Nasrollahzadeh, M.; Babaei, F.; Fakhri, P.; Jaleh, B., Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites. RSC Adv. 2015, 5 (14), 10782-10789.
12. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chem Soc Rev 2010, 39 (1), 228-40.
13. Eigler, S.; Hu, Y.; Ishii, Y.; Hirsch, A., Controlled functionalization of graphene oxide with sodium azide. Nanoscale 2013, 5 (24), 12136-9.
14. Chien, C. T.; Li, S. S.; Lai, W. J.; Yeh, Y. C.; Chen, H. A.; Chen, I. S.; Chen, L. C.; Chen, K. H.; Nemoto, T.; Isoda, S.; Chen, M.; Fujita, T.; Eda, G.; Yamaguchi, H.; Chhowalla, M.; Chen, C. W., Tunable photoluminescence from graphene oxide. Angew Chem Int Ed Engl 2012, 51 (27), 6662-6.
15. Luo, Q.-P.; Yu, X.-Y.; Lei, B.-X.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y., Reduced Graphene Oxide-Hierarchical ZnO Hollow Sphere Composites with Enhanced Photocurrent and Photocatalytic Activity. The Journal of Physical Chemistry C 2012, 116 (14), 8111-8117.
16. Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R., Reducing Graphene Oxide on a Visible-Light BiVO4Photocatalyst for an Enhanced Photoelectrochemical Water Splitting. The Journal of Physical Chemistry Letters 2010, 1 (17), 2607-2612.
17. Ding, J. J.; Liu, L. Z.; Xue, J. J.; Zhou, Z. W.; He, G. Y.; Chen, H. Q., Low-temperature preparation of magnetically separable Fe3O4@CuO-RGO core-shell heterojunctions for high-performance removal of organic dye under visible light. J Alloy Compd 2016, 688, 649-656.
18. Buchholz, D. B.; Ma, Q.; Alducin, D.; Ponce, A.; Jose-Yacaman, M.; Khanal, R.; Medvedeva, J. E.; Chang, R. P., The Structure and Properties of Amorphous Indium Oxide. Chem Mater 2014, 26 (18), 5401-5411.
19. Philip, J.; Punnoose, A.; Kim, B. I.; Reddy, K. M.; Layne, S.; Holmes, J. O.; Satpati, B.; Leclair, P. R.; Santos, T. S.; Moodera, J. S., Carrier-controlled ferromagnetism in transparent oxide semiconductors. Nat Mater 2006, 5 (4), 298-304.
20. Ho, C. H.; Chan, C. H.; Tien, L. C.; Huang, Y. S., Direct Optical Observation of Band-Edge Excitons, Band Gap, and Fermi Level in Degenerate Semiconducting Oxide Nanowires In2O3. J Phys Chem C 2011, 115 (50), 25088-25096.
21. Liang, C. H.; Meng, G. W.; Lei, Y.; Phillipp, F.; Zhang, L. D., Catalytic Growth of Semiconducting In2O3 Nanofibers. Advanced Materials 2001, 13 (17), 1330.
22. Kaleemulla, S.; Reddy, A. S.; Uthanna, S.; Reddy, P. S., Physical properties of flash evaporated In2O3 films prepared at different substrate temperatures. Materials Letters 2007, 61 (21), 4309-4313.
23. Farvid, S. S.; Dave, N.; Radovanovic, P. V., Phase-Controlled Synthesis of Colloidal In2O3 Nanocrystals via Size-Structure Correlation. Chemistry of Materials 2010, 22 (1), 9-11.
24. Li, Y.; Bando, Y.; Golberg, D., Single-Crystalline In2O3 Nanotubes Filled with In. Advanced Materials 2003, 15 (78), 581-585.
25. Mazzera, M.; Zha, M.; Calestani, D.; Zappettini, A.; Lazzarini, L.; Salviati, G.; Zanotti, L., Low-temperature In2O3 nanowire luminescence properties as a function of oxidizing thermal treatments. Nanotechnology 2007, 18 (35).
26. Ko, T. S.; Chu, C. P.; Chen, J. R.; Lu, T. C.; Kuo, H. C.; Wang, S. C., Tunable light emissions from thermally evaporated In2O3 nanostructures grown at different growth temperatures. Journal of Crystal Growth 2008, 310 (7-9), 2264-2267.
27. Lim, T.; Lee, S.; Meyyappan, M.; Ju, S., Control of semiconducting and metallic indium oxide nanowires. Acs Nano 2011, 5 (5), 3917-22.
28. Xue, P.; Yang, X.; Lai, X.; Xia, W.; Li, P.; Fang, J., Controlling synthesis and gas-sensing properties of ordered mesoporous In2O3-reduced graphene oxide (rGO) nanocomposite. Science Bulletin 2015, 60 (15), 1348-1354.
29. Choi, H.-J., Vapor–Liquid–Solid Growth of Semiconductor Nanowires. 2012, 1-36.
30. Yang, P. D.; Lieber, C. M., Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites. J Mater Res 1997, 12 (11), 2981-2996.
31. Kumaresan, V.; Largeau, L.; Madouri, A.; Glas, F.; Zhang, H. Z.; Oehler, F.; Cavanna, A.; Babichev, A.; Travers, L.; Gogneau, N.; Tchernycheva, M.; Harmand, J. C., Epitaxy of GaN Nanowires on Graphene. Nano Letters 2016, 16 (8), 4895-4902.
32. Chen, J.; Yao, B. W.; Li, C.; Shi, G. Q., An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225-229.
33. 施志霖, 硫化銦/氧化銦奈米線異質結構合成鑑定與分析. 國立東華大學材料科學與工程學系研究所 2015.
34. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y., Evaluation of solution-processed reduced graphene oxide films as transparent conductors. Acs Nano 2008, 2 (3), 463-470.
35. Hun, S., Thermal Reduction of Graphene Oxide. InTechOpen 2011.
36. Mathur, R. B.; Singh, B. P.; Pande, S., Carbon Nanomaterials: Synthesis, Structure, Properties and Applications. CRC Press 2016.
37. Zhan, D.; Ni, Z.; Chen, W.; Sun, L.; Luo, Z.; Lai, L.; Yu, T.; Wee, A. T. S.; Shen, Z., Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 2011, 49 (4), 1362-1366.
38. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R., Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 2008, 8 (1), 36-41.
39. Heydrich, S., Raman spectroscopy of nanopatterned graphene. University Regensburg 2014.
40. Berengue, O. M.; Rodrigues, A. D.; Dalmaschio, C. J.; Lanfredi, A. J. C.; Leite, E. R.; Chiquito, A. J., Structural characterization of indium oxide nanostructures: a Raman analysis. Journal of Physics D: Applied Physics 2010, 43 (4), 045401.
41. The structural and optical properties of ZnO thin films prepared at different RF sputtering power.
42. Di Blasi, O.; Briguglio, N.; Busacca, C.; Ferraro, M.; Antonucci, V.; Di Blasi, A., Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery. Applied Energy 2015, 147, 74-81.
43. Hao, J. Y.; Wang, Y. Y.; Tong, X. L.; Jin, G. Q.; Guo, X. Y., Photocatalytic hydrogen production over modified SiC nanowires under visible light irradiation. Int J Hydrogen Energ 2012, 37 (20), 15038-15044.
44. Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J., Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies. The Journal of Physical Chemistry C 2011, 115 (34), 17009-17019.
45. Yang, S.; Yue, W. B.; Huang, D. Z.; Chen, C. F.; Lin, H.; Yang, X. J., A facile green strategy for rapid reduction of graphene oxide by metallic zinc. Rsc Adv 2012, 2 (23), 8827-8832.
46. Zhang, Y.; Ma, H.-L.; Zhang, Q.; Peng, J.; Li, J.; Zhai, M.; Yu, Z.-Z., Facile synthesis of well-dispersed graphene by γ-ray induced reduction of graphene oxide. Journal of Materials Chemistry 2012, 22 (26), 13064.
47. Bajjou, O.; Mongwaketsi, P. N.; Khenfouch, M.; Bakour, A.; Baitoul, M.; Maaza, M.; Venturini, J. W., Photoluminescence Quenching and Structure of Nanocomposite Based on Graphene Oxide Layers Decorated with Nanostructured Porphyrin. Nanomater Nanotechno 2015, 5.
48. Fu, C. C.; Juang, R. S.; Huq, M. M.; Hsieh, C. T., Enhanced adsorption and photodegradation of phenol in aqueous suspensions of titania/graphene oxide composite catalysts. J Taiwan Inst Chem E 2016, 67, 338-345.
|