跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 15:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:湯發時
研究生(外文):Fa-Shih Tang
論文名稱:氧化銦奈米線/還原氧化石墨烯異質結構合成鑑定與特性分析
論文名稱(外文):Synthesis and characterization of In2O3 nanowires/reduced graphene oxide heterostructures
指導教授:田禮嘉
指導教授(外文):Li-Chia Tien
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:60
中文關鍵詞:氧化石墨烯氧化銦VS成長VLS成長異質結構光觸媒
外文關鍵詞:graphene oxideindium oxideVS growthVLS growthheterostructuresphotocatalytic activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文使用氣相傳輸法成長氧化銦(In2O3)奈米線,在氧化石墨烯(rGO)表面鍍金,以氣-液-固(VLS)成長機制成長出氧化銦奈米線,以及不使用任何觸媒,直接在氧化石墨烯表面以氣-固(VS)成長機制成長出氧化銦奈米線,並且對此兩種不同成長機制合成的氧化銦奈米線/還原氧化石墨烯異質結構進行鑑定與分析,藉由X光繞射儀(XRD)與穿透式電子顯微鏡(TEM)鑑定結果得知成長出的氧化銦奈米線皆為體心立方晶(FCC)結構,VLS成長機制的奈米線成長方向為(100),VS成長機制的奈米線有[001]與[111]兩種成長方向,而氧化石墨烯在成長過程中會被還原為還原氧化石墨烯(rGO)。從場發射掃描式電子顯微鏡(FE-SEM)觀察到在鍍金的樣品中可成長出茂密的氧化銦奈米線,而在未鍍金的樣品較為稀疏之外,還發現氧化銦會選擇在單層氧化石墨烯表面成長,在多層的氧化石墨烯則會形成二維氧化銦薄膜。利用紫外光/可見光吸收光譜儀發現氧化銦奈米線/還原氧化石墨烯異質結構的可見光吸收有些許的增強,主要為還原氧化石墨烯的貢獻,從X光光譜能譜發現氧化石墨烯在還原後,C sp2與C sp3兩個峰明顯的分離,以及在含氧官能基中,有較高熱穩定性的C-OH相對強度較高,從光致發光譜儀(PL)發現氧化石墨烯由退火轉變為還原氧化石墨烯,放光能力明顯增強,而氧化銦奈米線/還原氧化石墨烯異質結構與純氧化銦奈米線相比強度較弱,為消光效應(quenching effect)的影響,在光觸媒實驗中得知純氧化銦與純還原氧化石墨烯幾乎沒有光觸媒活性,而氧化銦奈米線/還原氧化石墨烯異質結構使從價帶躍遷至導帶的電子經由異質介面移動至另一材料上,降低了電子-電洞對複合的機率,使較多的自由電子與水產生超氧根離子與氫氧自由基將亞甲基藍降解,大幅提升了降解效率。
A vapor transport process was used to grow indium oxide nanowires on gold catalyzed graphene oxide surfaces by vapor-liquid-solid (VLS) mechanism and graphene oxide surfaces by vapor-solid (VS) mechanism, respectively. The samples were characterized by various characterization techniques and their growth mechanism were discussed. Both X-ray diffraction (XRD) and transmission electron microscopy (TEM) results show that the as-grown indium oxide nanowires are face centered cubic FCC with [100] growth direction. The graphene oxide was reduced to reduced graphene oxide during growth. The FE-SEM images show a high density of nanowires on graphene oxide surface grown by VLS mechanism. Moreover, the In2O3 nanowires were found to preferential grown on thin layers of graphene oxide. The two dimensional growth of In2O3 films were observed on thick layers of graphene oxide. The samples show a higher visible light absorption possible due to the reduced graphene oxide of heterostructures confirmed by UV/Vis absorption spectra. Compared to graphene oxide, the reduced graphene oxide shows a higher luminescence property. On the contrary, the In2O3/rGO heterostures shows weaker luminescence properties due to quenching effect. For visible light photocatalytic applications, the In2O3/rGO heterostructures show a higher visible-light-driven photocatalytic activity owing to the increased photo-induced charge separation efficiency, further increase the formation of superoxide radicals and hydroxyl radicals.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1前言與動機 1
第二章 文獻回顧 2
2.1 氧化石墨烯的結構與特性 2
2.2氧化銦的結構與特性 2
2.3 氧化銦/(還原)氧化石墨烯奈米結構的特性 3
2.4 VLS成長與VS成長 4
第三章 實驗配置 10
3.1 實驗藥品和製程設備 10
3.1.1 實驗基板 10
3.1.2 清洗溶劑 10
3.1.3 實驗藥品與器材 10
3.1.4 製程設備: 11
3.2 實驗步驟 11
3.2.1 基板處裡 11
3.2.2 氧化石墨烯製備 11
3.2.3 合成氧化銦奈米線/氧化石墨烯異質結構 11
3.3 實驗參數 12
1.二氧化矽厚度: 12
2.氧化石墨烯在基板上的表面濃度: 12
3.VLS成長: 12
4.VS成長: 12
3.4 分析儀器 13
3.4.1 場發射掃描式電子顯微鏡(FE-SEM) 13
3.4.2 原子力顯微鏡(AFM) 13
3.4.3 X光繞射分析儀(XRD) 13
3.4.4 拉曼光譜儀(Raman) 14
3.4.5 電子能譜儀(XPS) 14
3.4.6 穿透式電子顯微鏡(TEM) 15
3.4.7 紫外光/可見光吸收光譜儀(UV/Visible spectroscopy) 15
3.4.8 光致激發光譜儀(PL) 16
3.4.9 光觸媒活性測試 17
第四章 實驗結果與討論 21
4.1 氧化石墨烯濃度與二氧化矽厚度對旋轉塗佈的影響 21
4.1.1 氧化石墨烯旋轉塗佈在基板的表面分布 21
4.1.2 氧化石墨烯溶液滴落塗佈至不同基板上的表面形貌 22
4.1.3 薄膜厚度量測 22
4.1.4 小結 22
4.2 VLS成長 23
4.2.1 氧化銦奈米線/還原氧化石墨烯異質結構表面形貌 23
4.2.2 X光繞射晶體結構分析 24
4.2.3 拉曼光譜分析 25
4.2.4 X光光電子能譜表面元素分析 26
4.3 VS成長 27
4.3.1 討論不同成長機制的形貌 27
4.3.2 氧化銦奈米線的成核位置 28
4.4 TEM微結構鑑定 29
4.5 光學特性分析 29
4.5.1 紫外/可見光吸收光譜分析 29
4.5.2 光致螢光光譜分析 30
4.6 可見光光觸媒活性測試 30
第五章 結論 52
參考文獻 53
1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-9.

2. Lerf, A.; He, H.; Forster, M.; Klinowski, J., Structure of Graphite Oxide Revisited‖. The Journal of Physical Chemistry B 1998, 102 (23), 4477-4482.

3. Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H., Graphene-based materials: synthesis, characterization, properties, and applications. Small 2011, 7 (14), 1876-902.

4. Hamberg, I.; Granqvist, C. G., Evaporated Sn‐doped In2O3films: Basic optical properties and applications to energy‐efficient windows. Journal of Applied Physics 1986, 60 (11), R123-R160.

5. Ni, J.; Yan, H.; Wang, A.; Yang, Y.; Stern, C. L.; Metz, A. W.; Jin, S.; Wang, L.; Marks, T. J.; Ireland, J. R.; Kannewurf, C. R., MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes. J Am Chem Soc 2005, 127 (15), 5613-24.

6. Wen, S. J.; Campet, G.; Portier, J.; Couturier, G.; Goodenough, J. B., Correlations between the electronic properties of doped indium oxide ceramics and the nature of the doping element. Materials Science and Engineering: B 1992, 14 (1), 115-119.

7. Huang, H.; Yue, Z. K.; Li, G.; Wang, X. M.; Huang, J.; Du, Y. K.; Yang, P., Heterostructured composites consisting of In2O3 nanorods and reduced graphene oxide with enhanced interfacial electron transfer and photocatalytic performance. Journal of Materials Chemistry A 2014, 2 (47), 20118-20125.

8. Xu, X.; Wu, T.; Xia, F.; Li, Y.; Zhang, C.; Zhang, L.; Chen, M.; Li, X.; Zhang, L.; Liu, Y.; Gao, J., Redox reaction between graphene oxide and In powder to prepare In2O3/reduced graphene oxide hybrids for supercapacitors. Journal of Power Sources 2014, 266, 282-290.

9. Liu, J.; Ke, J.; Li, D.; Sun, H.; Liang, P.; Duan, X.; Tian, W.; Tade, M. O.; Liu, S.; Wang, S., Oxygen Vacancies in Shape Controlled Cu2O/Reduced Graphene Oxide/In2O3 Hybrid for Promoted Photocatalytic Water Oxidation and Degradation of Environmental Pollutants. ACS Appl Mater Interfaces 2017, 9 (13), 11678-11688.

10. Appenzeller, J.; Knoch, J.; Bjork, M. T.; Riel, H.; Schmid, H.; Riess, W., Toward Nanowire Electronics. IEEE Transactions on Electron Devices 2008, 55 (11), 2827-2845.

11. Nasrollahzadeh, M.; Babaei, F.; Fakhri, P.; Jaleh, B., Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites. RSC Adv. 2015, 5 (14), 10782-10789.

12. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chem Soc Rev 2010, 39 (1), 228-40.

13. Eigler, S.; Hu, Y.; Ishii, Y.; Hirsch, A., Controlled functionalization of graphene oxide with sodium azide. Nanoscale 2013, 5 (24), 12136-9.

14. Chien, C. T.; Li, S. S.; Lai, W. J.; Yeh, Y. C.; Chen, H. A.; Chen, I. S.; Chen, L. C.; Chen, K. H.; Nemoto, T.; Isoda, S.; Chen, M.; Fujita, T.; Eda, G.; Yamaguchi, H.; Chhowalla, M.; Chen, C. W., Tunable photoluminescence from graphene oxide. Angew Chem Int Ed Engl 2012, 51 (27), 6662-6.

15. Luo, Q.-P.; Yu, X.-Y.; Lei, B.-X.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y., Reduced Graphene Oxide-Hierarchical ZnO Hollow Sphere Composites with Enhanced Photocurrent and Photocatalytic Activity. The Journal of Physical Chemistry C 2012, 116 (14), 8111-8117.

16. Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R., Reducing Graphene Oxide on a Visible-Light BiVO4Photocatalyst for an Enhanced Photoelectrochemical Water Splitting. The Journal of Physical Chemistry Letters 2010, 1 (17), 2607-2612.

17. Ding, J. J.; Liu, L. Z.; Xue, J. J.; Zhou, Z. W.; He, G. Y.; Chen, H. Q., Low-temperature preparation of magnetically separable Fe3O4@CuO-RGO core-shell heterojunctions for high-performance removal of organic dye under visible light. J Alloy Compd 2016, 688, 649-656.

18. Buchholz, D. B.; Ma, Q.; Alducin, D.; Ponce, A.; Jose-Yacaman, M.; Khanal, R.; Medvedeva, J. E.; Chang, R. P., The Structure and Properties of Amorphous Indium Oxide. Chem Mater 2014, 26 (18), 5401-5411.

19. Philip, J.; Punnoose, A.; Kim, B. I.; Reddy, K. M.; Layne, S.; Holmes, J. O.; Satpati, B.; Leclair, P. R.; Santos, T. S.; Moodera, J. S., Carrier-controlled ferromagnetism in transparent oxide semiconductors. Nat Mater 2006, 5 (4), 298-304.

20. Ho, C. H.; Chan, C. H.; Tien, L. C.; Huang, Y. S., Direct Optical Observation of Band-Edge Excitons, Band Gap, and Fermi Level in Degenerate Semiconducting Oxide Nanowires In2O3. J Phys Chem C 2011, 115 (50), 25088-25096.

21. Liang, C. H.; Meng, G. W.; Lei, Y.; Phillipp, F.; Zhang, L. D., Catalytic Growth of Semiconducting In2O3 Nanofibers. Advanced Materials 2001, 13 (17), 1330.

22. Kaleemulla, S.; Reddy, A. S.; Uthanna, S.; Reddy, P. S., Physical properties of flash evaporated In2O3 films prepared at different substrate temperatures. Materials Letters 2007, 61 (21), 4309-4313.

23. Farvid, S. S.; Dave, N.; Radovanovic, P. V., Phase-Controlled Synthesis of Colloidal In2O3 Nanocrystals via Size-Structure Correlation. Chemistry of Materials 2010, 22 (1), 9-11.

24. Li, Y.; Bando, Y.; Golberg, D., Single-Crystalline In2O3 Nanotubes Filled with In. Advanced Materials 2003, 15 (78), 581-585.

25. Mazzera, M.; Zha, M.; Calestani, D.; Zappettini, A.; Lazzarini, L.; Salviati, G.; Zanotti, L., Low-temperature In2O3 nanowire luminescence properties as a function of oxidizing thermal treatments. Nanotechnology 2007, 18 (35).

26. Ko, T. S.; Chu, C. P.; Chen, J. R.; Lu, T. C.; Kuo, H. C.; Wang, S. C., Tunable light emissions from thermally evaporated In2O3 nanostructures grown at different growth temperatures. Journal of Crystal Growth 2008, 310 (7-9), 2264-2267.

27. Lim, T.; Lee, S.; Meyyappan, M.; Ju, S., Control of semiconducting and metallic indium oxide nanowires. Acs Nano 2011, 5 (5), 3917-22.

28. Xue, P.; Yang, X.; Lai, X.; Xia, W.; Li, P.; Fang, J., Controlling synthesis and gas-sensing properties of ordered mesoporous In2O3-reduced graphene oxide (rGO) nanocomposite. Science Bulletin 2015, 60 (15), 1348-1354.

29. Choi, H.-J., Vapor–Liquid–Solid Growth of Semiconductor Nanowires. 2012, 1-36.

30. Yang, P. D.; Lieber, C. M., Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites. J Mater Res 1997, 12 (11), 2981-2996.

31. Kumaresan, V.; Largeau, L.; Madouri, A.; Glas, F.; Zhang, H. Z.; Oehler, F.; Cavanna, A.; Babichev, A.; Travers, L.; Gogneau, N.; Tchernycheva, M.; Harmand, J. C., Epitaxy of GaN Nanowires on Graphene. Nano Letters 2016, 16 (8), 4895-4902.

32. Chen, J.; Yao, B. W.; Li, C.; Shi, G. Q., An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225-229.

33. 施志霖, 硫化銦/氧化銦奈米線異質結構合成鑑定與分析. 國立東華大學材料科學與工程學系研究所 2015.

34. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y., Evaluation of solution-processed reduced graphene oxide films as transparent conductors. Acs Nano 2008, 2 (3), 463-470.

35. Hun, S., Thermal Reduction of Graphene Oxide. InTechOpen 2011.

36. Mathur, R. B.; Singh, B. P.; Pande, S., Carbon Nanomaterials: Synthesis, Structure, Properties and Applications. CRC Press 2016.

37. Zhan, D.; Ni, Z.; Chen, W.; Sun, L.; Luo, Z.; Lai, L.; Yu, T.; Wee, A. T. S.; Shen, Z., Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 2011, 49 (4), 1362-1366.

38. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R., Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 2008, 8 (1), 36-41.

39. Heydrich, S., Raman spectroscopy of nanopatterned graphene. University Regensburg 2014.

40. Berengue, O. M.; Rodrigues, A. D.; Dalmaschio, C. J.; Lanfredi, A. J. C.; Leite, E. R.; Chiquito, A. J., Structural characterization of indium oxide nanostructures: a Raman analysis. Journal of Physics D: Applied Physics 2010, 43 (4), 045401.

41. The structural and optical properties of ZnO thin films prepared at different RF sputtering power.

42. Di Blasi, O.; Briguglio, N.; Busacca, C.; Ferraro, M.; Antonucci, V.; Di Blasi, A., Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery. Applied Energy 2015, 147, 74-81.

43. Hao, J. Y.; Wang, Y. Y.; Tong, X. L.; Jin, G. Q.; Guo, X. Y., Photocatalytic hydrogen production over modified SiC nanowires under visible light irradiation. Int J Hydrogen Energ 2012, 37 (20), 15038-15044.

44. Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J., Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies. The Journal of Physical Chemistry C 2011, 115 (34), 17009-17019.

45. Yang, S.; Yue, W. B.; Huang, D. Z.; Chen, C. F.; Lin, H.; Yang, X. J., A facile green strategy for rapid reduction of graphene oxide by metallic zinc. Rsc Adv 2012, 2 (23), 8827-8832.

46. Zhang, Y.; Ma, H.-L.; Zhang, Q.; Peng, J.; Li, J.; Zhai, M.; Yu, Z.-Z., Facile synthesis of well-dispersed graphene by γ-ray induced reduction of graphene oxide. Journal of Materials Chemistry 2012, 22 (26), 13064.

47. Bajjou, O.; Mongwaketsi, P. N.; Khenfouch, M.; Bakour, A.; Baitoul, M.; Maaza, M.; Venturini, J. W., Photoluminescence Quenching and Structure of Nanocomposite Based on Graphene Oxide Layers Decorated with Nanostructured Porphyrin. Nanomater Nanotechno 2015, 5.

48. Fu, C. C.; Juang, R. S.; Huq, M. M.; Hsieh, C. T., Enhanced adsorption and photodegradation of phenol in aqueous suspensions of titania/graphene oxide composite catalysts. J Taiwan Inst Chem E 2016, 67, 338-345.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊