跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 20:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯夢雀
研究生(外文):Maria Kormacheva
論文名稱:奈米粒子對早期哺乳類胚胎發育的影響
論文名稱(外文):Impact of Nanoparticles on Early Mammalian Embryo Development
指導教授:鄭嘉良
指導教授(外文):Chia-Liang Cheng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:56
中文關鍵詞:奈米粒子哺乳類胚胎發育
外文關鍵詞:NanodiamondMammalian EmbryoInfrared SpectroscopyTiO 2Fluorescence Microscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
Nowadays nanotecnologies are widely developed for use in different fields, including biology and medicine. As the result, development of nanotecnologies at whole, on the one hand, and development of reproductive technologies (for human and animals), on the other hand, including in-vitro operations with early embryos, can lead to increase the interaction probability between nanoparticles and the embryo. In present work we test the impact of nanoparticles on mammalian (mice) embryo to estimate their potential for researches and theranostic applications and analyze their toxicity for embryo.
Chapter 1. Introduction
1.1 Nanotechnology
1.1.1 Nanodiamond
1.1.2 Titanium Dioxide
1.2 Early Development of Mammalian Embryo
1.3 Review of Nanotoxicity in Embryos
1.4 Research Motivation
Chapter 2. Experimental tools
2.1 Infrared Spectroscopy
2.2 Photon Correlation Spectroscopy
2.3 Fluorescence Microscopy
2.4 Confocal Microscopy
2.5 Reactive Oxygen Species Measurement
2.6 pH Measurement
Chapter 3. Sample preparation and Experimental Methods
3.1 Preparation of particles and Experimental Methods
3.2 Preparation and Treatment of Embryos and Methods of Investigation
Chapter 4. Results and Discussion
4.1 Nanoparticles Characterization
4.2 Impact of Nanoparticles on Early Development of Embryo
Chapter 5. Conclusion
References
1. R.P. Feynman. (1959). Plenty of Room at the Bottom. Information Technology
Service of California Institute of Technology website.
http://www.its.caltech.edu/~feynman
2. N. Taniguchi. (1974). On the Basic Concept of 'NanoTechnology’. Proceedings of the
International Conference on Production Engineering, Tokyo, Part II (Japan Society of
Precision Engineering).
3. K.E. Drexler. (1981). Molecular Engineering: An Approach to the Development of
General Capabilities for Molecular Manipulation. Proceedings of the National
Academy of Sciences of the United States of America, 78.9: 5275–5278.
4. K.E. Drexler. (1990). Engines of Creation: The Coming Era of Nanotechnology.
Publisher: Garden City, N.Y.: Anchor Press/Doubleday.
5. The Royal Society and The Royal Academy of Engineering. (2004). Nanoscience and
nanotechnologies: opportunities and uncertainties. London, UK.
6. D.M. Adair. (2009). Nanoparticle vaccines against respiratory viruses. Wiley
Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1: 405–414.
7. A.H. Stegh. (2013) Toward personalized cancer nanomedicine – past, present, and
future. Integrative Biology, 5: 48–65.
8. W.H. De Jong, , P.J.A. Borm (2008) Drug delivery and nanoparticles: applications
and hazards. International Journal of Nanomedicine, 3: 133–149.
9. L. A. Bentolila et al. (2009) Quantum dots for in vivo small-animal imaging. Journal
of Nuclear Medicine, 50: 493–496.
10. C. Underwood, A.W. van Eps (2012) Nanomedicine and veterinary science: the
reality and the practicality. The Veterinary Journal, 193: 12–23.
11. V. Wagner et al. (2006) The emerging nanomedicine landscape. Nature
Biotechnology, 24: 1211–1217.
12. J. Cheng, S.H. Cheng. (2012). Influence of carbon nanotube length on toxicity to
zebrafish embryos. International Journal of Nanomedicine, 7: 3731–3739.
49
13. R. Kaur et al. (2013). Nanodiamonds as novel nanomaterials for biomedical
applications: drug delivery and imaging systems. International Journal of
Nanomedicine, 8: 203–220.
14. K. V. Volkov et al. (1989). Synthesis of Diamond from the Carbon in the
Deformation Products of Explosives. Physics of Combustion and Explosion, 26(3):
366-368.
15. V. Yu. Dolmatov. (2008). Detonation-synthesis nanodiamonds: synthesis, structure,
properties and applications. Russian Chemical Review, 77: 303.
16. H. Huang et al. (2007). Active nanodiamond hydrogels for chemotherapeutic
delivery. Nano Letters, 7(11): 3305–3314.
17. J. Li et al. (2010). Nanodiamonds as intracellular transporters of chemotherapeutic
drug. Biomaterials, 31(32): 8410–8418.
18. R. A. Shimkunas et al. (2009). Nanodiamond-insulin complexes as pH-dependent
protein delivery vehicles. Biomaterials, 30(29): 5720–5728.
19. G. Davies et al. (1976). Optical Studies of the 1.945 eV Vibronic Band in Diamond.
Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences, 348(1653): 285-298.
20. S.J. Yu et al. (2005). Bright fluorescent nanodiamonds: no photobleaching and low
cytotoxicity. Journal of the American Chemical Society, 127(50): 17604-5.
21. Gruber A et al.(1997) Scanning confocal optical microscopy and magnetic resonance
on single defect centers. Science, 276: 2012–2014.
22. A.D. Greentree. (2010). 21st-Century Applications of Nanodiamonds. Optics
Photonics News, 21: 20–25.
23. C.C. Fu et al. (2007) Characterization and application of single fluorescent
nanodiamonds as cellular biomarkers. Proceedings of the National Academy of
Sciences of USA, 104: 727–732.
24. I. I. Vlasov. (2009). Nanodiamond Photoemitters Based on Strong Narrow-Band
Luminescence from Silicon-Vacancy Defects. Advanced Materials, 21(7): 808–812.
50
25. A. Krueger. (2011). Beyond the shine: recent progress in applications of
nanodiamond. Journal Of Materials Chemistry, 21: 12571–12578.
26. K. B. Holt. (2007). Diamond at the nanoscale: applications of diamond nanoparticles
from cellular biomarkers to quantum computing. Philosophical Transactions of The
Royal Society A, 365: 2845–2861.
27. A. I. Shames. (2010). Structure and magnetic properties of detonation nanodiamond
chemically modified by copper. Journal of Applied Physics, 107, 014318.
28. A. Krueger, D. Lang. (2012). Functionality is Key: Recent Progress in the Surface
Modification of Nanodiamond. Advanced Functional Materials, 22: 890–906.
29. S. Raj et al. (2012). Nanotechnology in Cosmetics: Opportunities and Challenges.
Journal of Pharmacy & Bioallied Sciences 4.3: 186–193.
30. A. Fujishima, K. Honda. (1972). Electrochemical Photolysis of Water at a
Semiconductor Electrode. Nature, 238: 37 - 38.
31. Ch.-Yu. Jin et al. (2008). Cytotoxicity of Titanium Dioxide Nanoparticles in Mouse
Fibroblast Cells. Chemical research in Toxicology 21(9): 1871–1877.
32. B. Trouiller et al. (2009). Titanium Dioxide Nanoparticles Induce DNA Damage and
Genetic Instability In vivo in Mice. Cancer Research, 69: 8784.
33. M. Planchon et al. (2013). Interaction between Escherichia coli and TiO2
nanoparticles in natural and artificial waters. Colloid Surface B, 102: 158–164.
34. A. Nel et al. (2006). Toxic potential of materials at the nanolevel. Science, 311:
622–627.
35. C. Jin et al. (2011). Cellular Toxicity of TiO2 nanoparticles in anatase and rutile
crystal phase. Biological Trace Element Research, 141: 3–15.
36. S. F. Gilbert. (2010). Developmental Biology (9th Edition). Sunderland, MA, USA:
Sinauer Association, Inc. Printed.
37. Terese Winslow. (2001). Alexandria, VA 22314 USA.
38. P. Celá et al. (2014). Embryonic Toxicity of Nanoparticles. Cells Tissues Organs,
199: 1–23.
51
39. N.J. Rogers et al. (2007). The importance of physical and chemical characterization in
nanoparticle toxicity studies. Integrated Environmental Assessment and Management
3: 303– 304.
40. C. Ispas et al. (2009). Toxicity and developmental defects of different sizes and shape
nickel nanoparticles in zebrafish. Environmental Science & Technology, 43:
6349–6356.
41. K.J. Lee et al. (2012). In vivo quantitative study of sized-dependent transport and
toxicity of single silver nanoparticles using zebrafish embryos. Chemical Research in
Toxicology, 25: 1029–1046.
42. O. BarIlan et al. (2009). Toxicity assessments of multisized gold and silver
nanoparticles in zebrafish embryos. Small, 5: 1897–1910.
43. X. Zhu et al. (2008). Comparative toxicity of several metal oxide nanoparticle
aqueous suspensions to zebrafish (Danio rerio) early developmental stage. Journal of
Environmental Science and Health, 43: 278–284.
44. K.J. Lee et al. (2012). Single nanoparticle spectroscopy for real-time in vivo
quantitative analysis of transport and toxicity of single nanoparticles in single
embryos. Analyst, 137: 2973–2986.
45. W. Bai et al. (2010). Effects of copper nanoparticles on the development of zebrafish
embryos. Journal of Nanoscience and Nanotechnology, 10(12): 8670-6.
46. L. Truong et al. (2011). Differential stability of lead sulfide nanoparticles influences
biological responses in embryonic zebrafish. Archives of Toxicology, 85: 787–798.
47. C.M. Powers et al. (2011). Silver nanoparticles alter zebrafish development and larval
behavior: distinct roles for particle size, coating and composition. Neurotoxicology
and Teratology, 33: 708– 714.
48. L.D. Wise et al. (2009). Embryo-fetal developmental toxicity study design for
pharmaceuticals. Birth Defects Research Part B: Developmental and Reproductive
Toxicology, 86: 418–428.
49. M. Chu et al. (2010). Transfer of quantum dots from pregnant mice to pups across
the placental barrier. Small, 6: 670–678.
52
50. P.W. Li et al. (2010). Induction of cytotoxicity and apoptosis in mouse blastocysts by
silver nanoparticles. Toxicology Letters, 197: 82–87.
51. S. K. De et al. (1993). Stage-specific effects of cadmium on preimplantation embryo
development and implantation in the mouse. Toxicology, 80: 13–25.
52. K. Yamashita et al. (2011). Silica and titanium dioxide nanoparticles cause
pregnancy complications in mice. Nature Nanotechnology, 6: 321–328.
53. K.S. Hougaard et al. (2010). Effects of prenatal exposure to surface coated nanosized
titanium dioxide (UV-Titan). A study in mice. Particle and Fibre Toxicology, 7: 16.
54. N.A. Philbrook et al. (2011). The effect of TiO(2) and Ag nanoparticles on
reproduction and development of Drosophila melanogaster and CD-1 mice.
Toxicology and Applied Pharmacology, 257: 429–436.
55. T. Soderberg. (2016). Organic Chemistry With a Biological Emphasis. Chemistry
Wiki from University of California, Saint Davis. Web.
http://chemwiki.ucdavis.edu/Core/Organic_Chemistry/Organic_Chemistry_With_a_B
iological_Emphasis/
56. Infrared Spectroscopy. In Wikipedia. Retrieved from
https://en.wikipedia.org/wiki/Infrared_spectroscopy
57. D. Steele. (2006). Infrared Spectroscopy: Theory. John Wiley and Sons, Inc.
Print.
58. Dynamic light scattering. In Wikipedia. Retrieved from
https://en.wikipedia.org/wiki/Dynamic_light_scattering
59. W. Tscharnuter. (2000). Photon Correlation Spectroscopy in Particle Sizing.
Encyclopedia of Analytical Chemistry R.A. Meyers (Ed.). Chichester, UK: John
Wiley & Sons Ltd. Print.
60. ThermoFisher Scientific. (2010). Fluorescence Fundamentals. The Molecular Probes
Handbook. Web.
61. Fluorescence microscope. In Wikipedia. Retrieved from
https://en.wikipedia.org/wiki/Fluorescence_microscope
62. M. Minsky. (1988). Memoir on inventing the confocal microscope. Scanning, 10:
128–138.
53
63. Confocal Microscopy. In Wikipedia. Retrieved from
https://en.wikipedia.org/wiki/Confocal_microscopy
64. T. Devasagayam et al. (2004). Free Radicals and Antioxidants in Human Health:
Current Status and Future Prospects. Journal of Association of Physicians of India,
52: 796.
65. E.B. Pasqualotto et al. (2004). Effect of oxidative stress in follicular fluid on the
outcome of assisted reproductive procedures. Fertility and Sterility, 81: 973-6.
66. E. Salas-Vidal et al. (1998). Reactive oxygen species participate in the control of
mouse embryonic cell death. Experimental Cell Research, 238:136–147.
67. Ph. A. Dennery. (2007). Effects of Oxidative Stress on Embryonic Development.
Birth Defects Research (Part C), 81:155–162
68. S. Gupta. (2006). The Impact of Reactive Oxygen Species on Early Human Embryos.
Embryo Talk 1.2.
69. Emerson Process Management. (2010) The Theory of pH Measurement. 2400
Barranca Parkway, Irvine, CA 92606 USA. Application Data Sheet ADS
43-002/rev.C.
70. Sh. Hashimoto et al. (2000). Low Oxygen Tension During In Vitro Maturation is
Beneficial for Supporting the Subsequent Development of Bovine Cumulus±Oocyte
Complexes. Molecular Reproduction and Development, 57:353-360.
71. P. Bihari et al. (2008) Optimized dispersion of nanoparticles for biological in vitro
and in vivo studies. Particle and Fibre Toxicology, 5: 14.
72. H. Saito et al. (1984). The effect of serum fractions on embryo growth. Fertility and
Sterility, 41(5): 761-765.
73. D.E. Morbeck et al. (2001). Inhibitory action of human serum albumin (HSA) on
mouse embryo blastocyst development, human sperm motility, and binding of
antisperm antibodies. Fertility and Sterility, 76(3, S. 1): S103.
74. J.-S. Tu et al. (2006). Size-dependent surface CO stretching frequency investigations
on nanodiamond particles. The Journal of Chemical Physics 125, 174713.
75. S. Ciftan Hens et al. (2008). Nanodiamond bioconjugate probes and their collection
by electrophoresis. Diamond & Related Materials, 17: 1858–1866.
54
76. Ya. Wang. (2012). Electrochemical Behavior of Fluorinated and Aminated
Nanodiamond. International Journal of Electrochemical Science, 7: 6807 - 6815.
77. B. Gradzik. (2011). Surface modification of TiO 2 and SiO 2 nanoparticles for
application in polymeric nanocomposites. ChemiK, 65(7), 621-626.
78. P.-H. Chung et al. (2006). Spectroscopic study of bio-functionalized nanodiamonds.
Diamond & Related Materials, 15: 622 – 625.
79. M.-C. Léveillé et al. (1992). Effects of human sera and human serum albumin on
mouse embryo culture. Journal of Assisted Reproduction and Genetics, 9(1): 45-52.
80. H. Nagashima et al. (1984). Production of monozygotic mouse twins from
microsurgically bisected morulae. Journal of Reproduction & Infertility 70: 357–362.
81. B. Reichelt, H. Niemann. (1994). Generation of identical twin piglets following
bisection of embryos at the morula and blastocyst stage. Journal of Reproduction &
Infertility 100: 163–172.
82. N. Seike et al. (1989). Increase in calf production by the transfer of bisected bovine
embryos. Nihon Juigaku Zasshi (The Japanese Journal of Veterinary Science) 51:
1193–1199.
83. Y. Tsunoda et al. (1985). Production of monozygotic twins following the transfer of bisected embryos in the goats. Theriogenology 24: 337–343.
84. E.E. Zakharova et al. (2014). Biopsy of human morula-stage embryos: outcome of 215 IVF/ICSI cycles with PGS. PLoS One 9(9): e106433.
85. M. Kormacheva et al. (2015). Impact of Nanoparticles on the In-Vitro Development
of Early Mammalian Embryos. V International Symposium Topical Problems of
Biophotonics (TPB2015); June 20-24, Nizhniy Novgorod, Russia, p.140.
86. M Kormacheva et al. (2016). Interaction Of Nanoparticles And Zona Pellucida Of
Early Mammalian Embryo In Vitro. Annual Meeting of Physics Society of Republic
of China (PSROC) 2016; January 25-27, Kaohsiung, Taiwan.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top