|
1. R.P. Feynman. (1959). Plenty of Room at the Bottom. Information Technology Service of California Institute of Technology website. http://www.its.caltech.edu/~feynman 2. N. Taniguchi. (1974). On the Basic Concept of 'NanoTechnology’. Proceedings of the International Conference on Production Engineering, Tokyo, Part II (Japan Society of Precision Engineering). 3. K.E. Drexler. (1981). Molecular Engineering: An Approach to the Development of General Capabilities for Molecular Manipulation. Proceedings of the National Academy of Sciences of the United States of America, 78.9: 5275–5278. 4. K.E. Drexler. (1990). Engines of Creation: The Coming Era of Nanotechnology. Publisher: Garden City, N.Y.: Anchor Press/Doubleday. 5. The Royal Society and The Royal Academy of Engineering. (2004). Nanoscience and nanotechnologies: opportunities and uncertainties. London, UK. 6. D.M. Adair. (2009). Nanoparticle vaccines against respiratory viruses. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1: 405–414. 7. A.H. Stegh. (2013) Toward personalized cancer nanomedicine – past, present, and future. Integrative Biology, 5: 48–65. 8. W.H. De Jong, , P.J.A. Borm (2008) Drug delivery and nanoparticles: applications and hazards. International Journal of Nanomedicine, 3: 133–149. 9. L. A. Bentolila et al. (2009) Quantum dots for in vivo small-animal imaging. Journal of Nuclear Medicine, 50: 493–496. 10. C. Underwood, A.W. van Eps (2012) Nanomedicine and veterinary science: the reality and the practicality. The Veterinary Journal, 193: 12–23. 11. V. Wagner et al. (2006) The emerging nanomedicine landscape. Nature Biotechnology, 24: 1211–1217. 12. J. Cheng, S.H. Cheng. (2012). Influence of carbon nanotube length on toxicity to zebrafish embryos. International Journal of Nanomedicine, 7: 3731–3739. 49 13. R. Kaur et al. (2013). Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. International Journal of Nanomedicine, 8: 203–220. 14. K. V. Volkov et al. (1989). Synthesis of Diamond from the Carbon in the Deformation Products of Explosives. Physics of Combustion and Explosion, 26(3): 366-368. 15. V. Yu. Dolmatov. (2008). Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russian Chemical Review, 77: 303. 16. H. Huang et al. (2007). Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Letters, 7(11): 3305–3314. 17. J. Li et al. (2010). Nanodiamonds as intracellular transporters of chemotherapeutic drug. Biomaterials, 31(32): 8410–8418. 18. R. A. Shimkunas et al. (2009). Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials, 30(29): 5720–5728. 19. G. Davies et al. (1976). Optical Studies of the 1.945 eV Vibronic Band in Diamond. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 348(1653): 285-298. 20. S.J. Yu et al. (2005). Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. Journal of the American Chemical Society, 127(50): 17604-5. 21. Gruber A et al.(1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science, 276: 2012–2014. 22. A.D. Greentree. (2010). 21st-Century Applications of Nanodiamonds. Optics Photonics News, 21: 20–25. 23. C.C. Fu et al. (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proceedings of the National Academy of Sciences of USA, 104: 727–732. 24. I. I. Vlasov. (2009). Nanodiamond Photoemitters Based on Strong Narrow-Band Luminescence from Silicon-Vacancy Defects. Advanced Materials, 21(7): 808–812. 50 25. A. Krueger. (2011). Beyond the shine: recent progress in applications of nanodiamond. Journal Of Materials Chemistry, 21: 12571–12578. 26. K. B. Holt. (2007). Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Philosophical Transactions of The Royal Society A, 365: 2845–2861. 27. A. I. Shames. (2010). Structure and magnetic properties of detonation nanodiamond chemically modified by copper. Journal of Applied Physics, 107, 014318. 28. A. Krueger, D. Lang. (2012). Functionality is Key: Recent Progress in the Surface Modification of Nanodiamond. Advanced Functional Materials, 22: 890–906. 29. S. Raj et al. (2012). Nanotechnology in Cosmetics: Opportunities and Challenges. Journal of Pharmacy & Bioallied Sciences 4.3: 186–193. 30. A. Fujishima, K. Honda. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238: 37 - 38. 31. Ch.-Yu. Jin et al. (2008). Cytotoxicity of Titanium Dioxide Nanoparticles in Mouse Fibroblast Cells. Chemical research in Toxicology 21(9): 1871–1877. 32. B. Trouiller et al. (2009). Titanium Dioxide Nanoparticles Induce DNA Damage and Genetic Instability In vivo in Mice. Cancer Research, 69: 8784. 33. M. Planchon et al. (2013). Interaction between Escherichia coli and TiO2 nanoparticles in natural and artificial waters. Colloid Surface B, 102: 158–164. 34. A. Nel et al. (2006). Toxic potential of materials at the nanolevel. Science, 311: 622–627. 35. C. Jin et al. (2011). Cellular Toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biological Trace Element Research, 141: 3–15. 36. S. F. Gilbert. (2010). Developmental Biology (9th Edition). Sunderland, MA, USA: Sinauer Association, Inc. Printed. 37. Terese Winslow. (2001). Alexandria, VA 22314 USA. 38. P. Celá et al. (2014). Embryonic Toxicity of Nanoparticles. Cells Tissues Organs, 199: 1–23. 51 39. N.J. Rogers et al. (2007). The importance of physical and chemical characterization in nanoparticle toxicity studies. Integrated Environmental Assessment and Management 3: 303– 304. 40. C. Ispas et al. (2009). Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environmental Science & Technology, 43: 6349–6356. 41. K.J. Lee et al. (2012). In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos. Chemical Research in Toxicology, 25: 1029–1046. 42. O. BarIlan et al. (2009). Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small, 5: 1897–1910. 43. X. Zhu et al. (2008). Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. Journal of Environmental Science and Health, 43: 278–284. 44. K.J. Lee et al. (2012). Single nanoparticle spectroscopy for real-time in vivo quantitative analysis of transport and toxicity of single nanoparticles in single embryos. Analyst, 137: 2973–2986. 45. W. Bai et al. (2010). Effects of copper nanoparticles on the development of zebrafish embryos. Journal of Nanoscience and Nanotechnology, 10(12): 8670-6. 46. L. Truong et al. (2011). Differential stability of lead sulfide nanoparticles influences biological responses in embryonic zebrafish. Archives of Toxicology, 85: 787–798. 47. C.M. Powers et al. (2011). Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicology and Teratology, 33: 708– 714. 48. L.D. Wise et al. (2009). Embryo-fetal developmental toxicity study design for pharmaceuticals. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 86: 418–428. 49. M. Chu et al. (2010). Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small, 6: 670–678. 52 50. P.W. Li et al. (2010). Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicology Letters, 197: 82–87. 51. S. K. De et al. (1993). Stage-specific effects of cadmium on preimplantation embryo development and implantation in the mouse. Toxicology, 80: 13–25. 52. K. Yamashita et al. (2011). Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nature Nanotechnology, 6: 321–328. 53. K.S. Hougaard et al. (2010). Effects of prenatal exposure to surface coated nanosized titanium dioxide (UV-Titan). A study in mice. Particle and Fibre Toxicology, 7: 16. 54. N.A. Philbrook et al. (2011). The effect of TiO(2) and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicology and Applied Pharmacology, 257: 429–436. 55. T. Soderberg. (2016). Organic Chemistry With a Biological Emphasis. Chemistry Wiki from University of California, Saint Davis. Web. http://chemwiki.ucdavis.edu/Core/Organic_Chemistry/Organic_Chemistry_With_a_B iological_Emphasis/ 56. Infrared Spectroscopy. In Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Infrared_spectroscopy 57. D. Steele. (2006). Infrared Spectroscopy: Theory. John Wiley and Sons, Inc. Print. 58. Dynamic light scattering. In Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Dynamic_light_scattering 59. W. Tscharnuter. (2000). Photon Correlation Spectroscopy in Particle Sizing. Encyclopedia of Analytical Chemistry R.A. Meyers (Ed.). Chichester, UK: John Wiley & Sons Ltd. Print. 60. ThermoFisher Scientific. (2010). Fluorescence Fundamentals. The Molecular Probes Handbook. Web. 61. Fluorescence microscope. In Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Fluorescence_microscope 62. M. Minsky. (1988). Memoir on inventing the confocal microscope. Scanning, 10: 128–138. 53 63. Confocal Microscopy. In Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Confocal_microscopy 64. T. Devasagayam et al. (2004). Free Radicals and Antioxidants in Human Health: Current Status and Future Prospects. Journal of Association of Physicians of India, 52: 796. 65. E.B. Pasqualotto et al. (2004). Effect of oxidative stress in follicular fluid on the outcome of assisted reproductive procedures. Fertility and Sterility, 81: 973-6. 66. E. Salas-Vidal et al. (1998). Reactive oxygen species participate in the control of mouse embryonic cell death. Experimental Cell Research, 238:136–147. 67. Ph. A. Dennery. (2007). Effects of Oxidative Stress on Embryonic Development. Birth Defects Research (Part C), 81:155–162 68. S. Gupta. (2006). The Impact of Reactive Oxygen Species on Early Human Embryos. Embryo Talk 1.2. 69. Emerson Process Management. (2010) The Theory of pH Measurement. 2400 Barranca Parkway, Irvine, CA 92606 USA. Application Data Sheet ADS 43-002/rev.C. 70. Sh. Hashimoto et al. (2000). Low Oxygen Tension During In Vitro Maturation is Beneficial for Supporting the Subsequent Development of Bovine Cumulus±Oocyte Complexes. Molecular Reproduction and Development, 57:353-360. 71. P. Bihari et al. (2008) Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Particle and Fibre Toxicology, 5: 14. 72. H. Saito et al. (1984). The effect of serum fractions on embryo growth. Fertility and Sterility, 41(5): 761-765. 73. D.E. Morbeck et al. (2001). Inhibitory action of human serum albumin (HSA) on mouse embryo blastocyst development, human sperm motility, and binding of antisperm antibodies. Fertility and Sterility, 76(3, S. 1): S103. 74. J.-S. Tu et al. (2006). Size-dependent surface CO stretching frequency investigations on nanodiamond particles. The Journal of Chemical Physics 125, 174713. 75. S. Ciftan Hens et al. (2008). Nanodiamond bioconjugate probes and their collection by electrophoresis. Diamond & Related Materials, 17: 1858–1866. 54 76. Ya. Wang. (2012). Electrochemical Behavior of Fluorinated and Aminated Nanodiamond. International Journal of Electrochemical Science, 7: 6807 - 6815. 77. B. Gradzik. (2011). Surface modification of TiO 2 and SiO 2 nanoparticles for application in polymeric nanocomposites. ChemiK, 65(7), 621-626. 78. P.-H. Chung et al. (2006). Spectroscopic study of bio-functionalized nanodiamonds. Diamond & Related Materials, 15: 622 – 625. 79. M.-C. Léveillé et al. (1992). Effects of human sera and human serum albumin on mouse embryo culture. Journal of Assisted Reproduction and Genetics, 9(1): 45-52. 80. H. Nagashima et al. (1984). Production of monozygotic mouse twins from microsurgically bisected morulae. Journal of Reproduction & Infertility 70: 357–362. 81. B. Reichelt, H. Niemann. (1994). Generation of identical twin piglets following bisection of embryos at the morula and blastocyst stage. Journal of Reproduction & Infertility 100: 163–172. 82. N. Seike et al. (1989). Increase in calf production by the transfer of bisected bovine embryos. Nihon Juigaku Zasshi (The Japanese Journal of Veterinary Science) 51: 1193–1199. 83. Y. Tsunoda et al. (1985). Production of monozygotic twins following the transfer of bisected embryos in the goats. Theriogenology 24: 337–343. 84. E.E. Zakharova et al. (2014). Biopsy of human morula-stage embryos: outcome of 215 IVF/ICSI cycles with PGS. PLoS One 9(9): e106433. 85. M. Kormacheva et al. (2015). Impact of Nanoparticles on the In-Vitro Development of Early Mammalian Embryos. V International Symposium Topical Problems of Biophotonics (TPB2015); June 20-24, Nizhniy Novgorod, Russia, p.140. 86. M Kormacheva et al. (2016). Interaction Of Nanoparticles And Zona Pellucida Of Early Mammalian Embryo In Vitro. Annual Meeting of Physics Society of Republic of China (PSROC) 2016; January 25-27, Kaohsiung, Taiwan.
|