跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 21:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:倪懿池
研究生(外文):I-Chih Ni
論文名稱:金屬奈米粒子與分子所組成的奈米結構之跨領域應用
論文名稱(外文):Multidisciplinary application of assembled nanostructure consisted with molecule functionalized metal nanoparticles
指導教授:曾賢德曾賢德引用關係
指導教授(外文):Shien-Der Tzeng
學位類別:博士
校院名稱:國立東華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:108
中文關鍵詞:奈米顆粒分子金屬奈米粒子結構表面增強拉曼溼度感測器分子熱電性質
外文關鍵詞:NanoparticleMolecule metal nanoparticle structateSERSHumidity sensorMolecule thermoelectric properties
相關次數:
  • 被引用被引用:2
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
自主裝奈米顆粒薄膜具有許多有趣的光學與電學特質,例如金屬奈米顆粒薄膜具有很強的表面電漿共振吸收,且吸收共振波長可由奈米粒子之間的間距來調控,此外金屬奈米顆粒間將會產生一強局域電場,並可用來增強拉曼訊號、增強太陽能的效率與影響奈米元件的電荷傳輸等等。奈米顆粒薄膜的穿隧電阻也將會奈米顆粒之間的間距改變,當間距從0.9奈米變成1.8奈米時,薄膜的電學特性將從導電態變為絕緣態。 而奈米顆粒薄膜電阻對於間距變化的靈敏反應和特性可由表面所修飾的分子來定義,使它可被用來感測特定的氣體分子、重金屬、有機物或微小的曲率變化。
在這個研究當中,我們將分子與金屬奈米顆粒組成的奈米顆粒薄膜應用在幾個不同的領域,如可重複使用的SERS基板、高靈敏的濕度(水氣)感測器與量測分子熱電上。在實驗當中,我們也證實可由簡單的臭氧處理來還原已經使用過金奈米顆粒薄膜的SERS基板,並且發現金奈米顆粒薄膜SERS基板在反覆使用50次後,能維持一樣的增強效果。此外,我們也發現當表面接上metal-ptoroporphyrin分子的奈米顆粒薄膜對於水氣有很靈敏的反應,且具有相當短的反應時間和穩定性。最後我們也把分子-金奈米顆粒結構應用於分子的熱電量測,我們將待測分子修飾於奈米金表面,並鋪排於一純金的電極上,並利用自行設計的量測機構來量測待測分子的熱電電壓,並且計算出他的功效與seebeck 係數。從這些不同的領域應用,證明了分子-金屬奈米顆粒結構,在不同領域中將有相當不錯的應用性。
The assembled nanostructures consisting of nanoparticles has many interesting optical, electrical, and photo-electric properties. For instance, the assembled gold and silver nanoparticle film has strong interparticle coupling effect on their local surface plasmon resonance (LSPR), which can be tuned through control interparticle spacing between adjacent nanoparticle. The strong local electromagnetic field adjacent nanoparticles from LSPR created is often applied to the surface enhanced Raman spectroscopy. Similarly, the tunneling resistance of nanoparticle films also has the strong influence of interparticle space s. For example, the electric properties change from Mott-metal to Mott-insulator when interparticle spacing increased. Besides, the characteristics of nanoparticle films also depend on their surface-modified molecules. The specific characteristic and high sensitivity resistance variation for interparticle spacing have power and high potential application at chemisorbed sensors, ion sensors, and bending sensors.
In this reports, we fabricated the assembled nanostructure consisted with molecule functionalized metal nanoparticles by centrifugal assembly method, and applied to reusable SERS substrate, humidity sensor, and molecule thermoelectric properties studies. For reusable SERS substrate, we demonstrate a simple method to reuse SERS substrate of assembled AuNPs and AgNPs films through ozone treatment to remove analyte. The analytes molecules on SERS substrate were easy decomposed with less ozone exposure time, and could renew SERS substrate up to fifty times. In addition, we also found metal-protoporphyrin AuNP films could be apply to humidity sensors. The resistance of metal-protoporphyrin AuNP films would increase when the film exposed in water vapor. In addition, metal-protoporphyrin AuNP films have higher response and much better repeatability than alkanethiol AuNP films. Finally, we also measurement the Seebeck coefficient of molecule junctions by using novel nano-assembly method to fabricate composite molecule-AuNPs films and build up a measurement system. We got the Seebeck coefficient of metal-protoporphyrin-AuNPs films and cysteine/cysteamine-AuNPs films, and found the Seebeck coefficients of metal-protoporphyrin-AuNPs films were positive, but was negative to cysteine/cysteamine-AuNPs films. We also found Heme-AuNPs and Hematin-AuNPs film have similar Seebeck coefficient, this may due to same ceter-metal ion.
Contents
Chapter1. Introduction 1
1.1 Overview 1
1.2 Assembled nanoparticle films 2
1.3 The characteristic and application of Assembled nanoparticle films 3
1.4 Outline of the work 8
1.5 References 9
Chapter 2. Materials and Methods 11
2.1 Gold and silver nanoparticle synthesis 11
2.1.1 Preparation of gold nanoparticle 11
2.1.2 Silver nanoparticle method (15~40 nm) 17
2.2 Gold and silver nanoparticle modification method 18
2.3 Lithography and electrode fabrication 22
2.4 Assembly of nanoparticle films 23
2.5 Reference 24
Chapter 3. Ultra-Sensitive and Reusable SERS Substrate 27
3.1 Introduction 27
3.2 Basic Principles 33
3.2.1 Raman scattering 33
3.2.2 Surface enhanced Raman spectroscopy (SERS) 34
3.3 Experiment method and measurement system 37
3.3.1 SERS measurements 37
3.3.2 Ozone treatment method 38
3.4 Result and Discussion 39
3.4.1 Au-NPs and AgNPs film SERS substrate 39
3.4.2 Ozone treatment method 41
3.4.3 Reusable SERS substrate 51
3.5 Conclusion 55
3.6 Reference 56
Chapter 4. High-Response Humidity Sensor Utilizing Metal- Protoporphyrin Encapsulated Gold Nanoparticles 61
4.1 Introduction 61
4.2 Basic Principles 70
4.3 Experiment method and measurement system 70
4.3.1 Metal-protoporphyrin-AuNP film 70
4.3.2 Measurement system 71
4.4 Result and Discussion 72
4.4.1 Metal-protoporphyrin-AuNP films for humidity sensing 72
4.4.2 Alkanethiol-AuNP film for humidity sensing 78
4.4.3 Repeatability test and response time 80
4.5 Conclusion 84
4.6 Reference 84
Chapter 5. Thermoelectric Properties of Composite Nanoparticle Array with Protoporphyrin Molecule Junctions 87
5.1 Introduction 87
5.2 Basic Principles 93
5.3 Experiment method and measurement system 95
5.3.1 Metal-protoporphyrin-AuNP film 95
5.3.2 Measurement system 95
5.4 Result and Discussion 100
5.5 Conclusion 105
5.6 Reference 105
Chapter6. Summary 107
Chapter 1.
[1] Drexler, K. Eric, Engines of Creation: The coming era of nanotechnology. Doubleday., 1986, ISBN 0-385-19973-2.
[2] K. D. Hermanson, S. O. Lumsdon, J. P. Williams, and O. D. Velev, “Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions”, Science 294, 1082-1086 (2001).
[3] Bernard P. Binks, “Particles as surfactants—similarities and differences”, Current Opinion in Colloid & Interface Science 7, 21-41 (2002).
[4] Venugopal Santhanam, Jia Liu, Rajan Agarwal, and Ronald P. Andres, “Self-assembly of uniform monolayer arrays of nanoparticles”, Langmuir 19, 7881-7887 (2003).
[5] Junfeng Zhai, Yuling Wang, Yueming Zhai and Shaojun Dong, “Rapid fabrication of Au nanoparticle films with the aid of centrifugal force”, Nanotechnology 20, 055609 (2009).
[6] J. J. Diao, F. S. Qiu, G. D. Chen, and M. E. Reeves, “Surface vertical deposition for gold nanoparticle film”, Journal of Physics D: Applied Physics, 2003 36, L25-27.
[7] I-Chi Ni, Su-Ching Yang, Cheng-Wei Jian, Chih-Shin Luo, Watson Kuo, Kuan-Jiuh Lin, and Shien-Der Tzeng, “Formation mechanism, patterning, and physical properties of gold-nanoparticle films assembled by an interaction-controlled centrifugal method”, Journal of Physical Chemistry C 116, 8095-8101 (2012).
[8] Maya Zayats, Andrei B. Kharitonov, Svetlana P. Pogorelova, Oleg Lioubashevski, Eugenii Katz, and Itamar Willner, “Probing photoelectrochemical processes in Au−CdS nanoparticle arrays by surface plasmon resonance:  application for the detection of acetylcholine esterase inhibitors”, Journal of the American Chemical Society 125, 16006-160014 (2003).
[9] Richard W. Taylor, Rubén Esteban, Sumeet Mahajan, Javier Aizpurua, and Jeremy J. Baumberg, “Optimizing SERS from gold nanoparticle clusters: addressing the near field by an embedded chain plasmon model”, Journal of Physical Chemistry C 120, 10512-10522 (2016).
[10] H. Yockell-Lelièvre, F. Lussier, and J.-F. Masson, “Influence of the particle shape and density of self-Assembled gold nanoparticle sensors on LSPR and SERS”, Journal of Physical Chemistry C 119, 28577-28585 (2015).
[11] Jun Yin, Tao Wu, Jibin Song, Qian Zhang, Shiyong Liu, Rong Xu, and Hongwei Duan, “SERS-active nanoparticles for sensitive and selective detection of cadmium ion”, Chemistry of Materials 23, 4756-4764 (2011).
[12] Hao-Tse Hsiao, I-Chih Ni, Shien-Der Tzeng, Wei-Fan Lin and Chu-Hsuan Lin, “The n-type Ge photodetectors with gold nanoparticles deposited to enhance the responsivity”, Nanoscale Research Letters 9, 640-646 (2014).
[13] Sheng-Han Tu, Da-Ge Ruan, Shien-Der Tzeng, I-Chi Ni, and Chih-Ming Wang, “Optical properties of InGaN/GaN multiquantum wells light-emitting diode with one-dimensional Au nanoparticle grating”, Journal of Nanophotonics 8, 084097 (2014).
[14] Hideyuki Nakanishi, Kyle J. M. Bishop, Bartlomiej Kowalczyk, Abraham Nitzan, Emily A. Weiss, Konstantin V. Tretiakov, Mario M. Apodaca, Rafal Klajn, J. Fraser Stoddart, and Bartosz A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles “, Nature 460, 371-375 (2009).
[15] Michael Galperin, Mark A. Ratner, and Abraham Nitzan, “Hysteresis, switching, and negative differential resistance in molecular junctions:  a polaron model”, Nano Letters 5, 125-130 (2005).
[16] Kuznetsov Alexander M., “Negative differential resistance and switching behavior of redox-mediated tunnel contact”, Journal of Chemical Physics 127, 084710 (2007).
[17] Cheng-Wei Jiang, I-Chih Ni, Shien-Der Tzeng, Cen-Shawn Wu and Watson Kuo, “Identification of Mott insulators and Anderson insulators in self-assembled gold nanoparticles thin films”, Nanoscale 6, 5887-5893 (2014).
[18] Nadejda Krasteva, Isabelle Besnard, Berit Guse, Roland E. Bauer, Klaus Müllen, Akio Yasuda, and Tobias Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications”, Nano Letters 2, 551-555 (2002).
[19] Yvonne Joseph, Antun Peić, Xudong Chen, Josef Michl, Tobias Vossmeyer, and Akio Yasuda, “Vapor sensitivity of networked gold nanoparticle chemiresistors:  importance of flexibility and resistivity of the interlinkage”, Journal of Physical Chemistry C 111, 12855-12859 (2007).
[20] Lee J. Hubble, Edith Chow, James S. Cooper, Melissa Webster, Karl-Heinz Müller, Lech Wieczoreka and Burkhard Raguse, “Gold nanoparticle chemiresistors operating in biological fluids”, Lab on a Chip 12, 3040-3048 (2012).
[21] Zheng Guo, Zhong-Gang Liu, Xian-Zhi Yao, Kai-Sheng Zhang, Xing Chen, Jin-Huai Liu, and Xing-Jiu Huang, “A molecular-gap device for specific determination of mercury ions”, Scientific Reports 3, 3115 (2013).
[22] Cheng-Wei Jiang, I.-Chih Ni, Shien-Der Tzeng, and Watson Kuo, “Nearly isotropic piezoresistive response due to charge detour conduction in nanoparticle thin films”, Scientific Reports 5, 11939 (2016).
Chapter 2.
[1] Slot JW, Geuze HJ, “A new method of preparing gold probes for multiple-labeling cytochemistry,” European Journal of Cell Biology 38, 87-93 (1985).
[2] Kenneth R. Brown, Daniel G. Walter, and Michael J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chemistry of Materials 12, 306-313 (2000).
[3] Stephan Link and Mostafa A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” Journal of Physical Chemistry B 103, 4212-4217 (1999).
[4] Guoping Chen, Michiaki Takezawa, Naoki Kawazoe, Tetsuya Tateishi, “Preparation of cationic gold nanoparticles for gene delivery,” The Open Biotechnology Journal 2, 152-156 (2008).
[5] Kensuke Naka, Hideaki Itoh, Yoshihiro Tampo, and Yoshiki Chujo, “Effect of gold nanoparticles as a support for the oligomerization of l-cysteine in an aqueous solution,” Langmuir 19, 5546-5549 (2003).
[6] Lingyan Zhang, Ruo Yuan, Yaqing Chai, Xuelian Li “Investigation of the electrochemical and electrocatalytic behavior of positively charged gold nanoparticle and l-cysteine film on an Au electrode,” Analytica Chimica Acta 596, 99-105 (2007).
[7] Y. J. Zhang, “Investigation of gold and silver nanoparticles on absorption heating and scattering imaging,” Plasmonics 6, 393-397 (2011).
[8] Ji-Young Kim and Jae-Seung Lee, “Synthesis and thermally reversible assembly of DNA−gold nanoparticle cluster conjugates,” Nano Letters 9, 12, 4564-4569 (2009).
[9] Chih-Ching Huang and Huan-Tsung Chang, “Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles,” Chemical Communications 12, 1215-1217 (2007).
[10] M. Annadhasan, T. Muthukumarasamyvel, V. R. Sankar Babu, and N. Rajendiran, “Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium,” ACS Sustainable Chemistry and Engineering 2, 887-896 (2014).
[11] Inhee Choi, Hyeon Don Song, Suseung Lee, Young In Yang, Taewook Kang, and Jongheop Yi, “Core–satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex,” Journal of the American Chemical Society 134, 12083-12090 (2012).
[12] I-Chi Ni, Su-Ching Yang, Cheng-Wei Jian, Chih-Shin Luo, Watson Kuo, Kuan-Jiuh Lin, and Shien-Der Tzeng, “Formation mechanism, patterning, and physical properties of gold-nanoparticle films assembled by an interaction-controlled centrifugal method,” Journal of Physical Chemistry C 116, 8095-8101 (2012).
Chapter 3.
[1] I-Chi Ni, Su-Ching Yang, Cheng-Wei Jian, Chih-Shin Luo, Watson Kuo, Kuan-Jiuh Lin, and Shien-Der Tzeng, “Formation mechanism, patterning, and physical properties of gold-nanoparticle films assembled by an interaction-controlled centrifugal method,” Journal of Physical Chemistry C 116, 8095-8101 (2012).
[2] Chi-Fan Chen, Shien-Der Tzeng, Hung-Ying Chen, Kuan-Jiuh Lin, and Shangjr Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices:  evidence of near-field coupling,” Journal of the American Chemical Society 130, 824-826 (2008).
[3] R. Aroca, Surface-Enhanced Raman Spectroscopy; Wiley: New York, 2006.
[4] Lev Dykmana and Nikolai Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chemical Society Reviews 41, 2256-2282 (2012).
[5] Jeffrey N. Anker, W. Paige Hall, Olga Lyandres, Nilam C. Shah, Jing Zhao, and Richard P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials 7, 442-453 (2008).
[6] Sujit Kumar Ghosh and Tarasankar Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:  from theory to applications,” Chemical Reviews 107, 4797-4862 (2007).
[7] Matthew E. Stewart, Christopher R. Anderton, Lucas B. Thompson, Joana Maria, Stephen K. Gray, John A. Rogers , and Ralph G. Nuzzo, “Nanostructured plasmonic sensors,” Chemical Reviews 108, 494-521 (2008).
[8] Ying Fang, Nak-Hyun Seong, and Dana D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321, 388-392 (2008).
[9] V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant, and M. Rothschild, “A Nanoparticle Convective Directed Assembly Process for the Fabrication of Periodic Surface Enhanced Raman Spectroscopy Substrates,” Advanced Materials 22, 4298-4302 (2010).
[10] Xiao X. Han, Genin Gary Huang, Bing Zhao, and Yukihiro Ozaki, “Label-free highly sensitive detection of proteins in aqueous solutions using surface-enhanced Raman scattering,” Analytical Chemistry 81, 3329-3333 (2009).
[11] Amy M. Michaels, Jiang, and Louis Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” Journal of Physical Chemistry B 104, 11965-11971 (2000).
[12] Shuming Nie and Steven R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
[13] Matthew J. Banholzer, Jill E. Millstone, Lidong Qina and Chad A. Mirkin, “Rationally designed nanostructures for surface-enhanced Raman spectroscopy,” Chemical Society Reviews 37, 885-897 (2008).
[14] Aline Cerf, Gábor Molnár and Christophe Vieu, “Novel Approach for the assembly of highly efficient SERS substrates,” Applied Materials & Interfaces 1, 2544-2550 (2009).
[15] Xianglin Li, Hailong Hu, Dehui Li, Zexiang Shen, Qihua Xiong, Shuzhou Li, and Hong Jin Fan, “Ordered array of gold semishells on TiO2 spheres: An ultrasensitive and recyclable SERS substrate,” Applied Materials & Interfaces 4, 2180-2185 (2012).
[16] Godhuli Sinha, Laura E. Depero, and Ivano Alessandri, “Recyclable SERS substrates based on Au-coated ZnO nanorods,” Applied Materials & Interfaces 3, 2557-2563 (2011).
[17] Xiaoxin Zou, Rafael Silva, Xiaoxi Huang, Jafar F. Al-Sharab and Tewodros Asefa, “A self-cleaning porous TiO2–Ag core–shell nanocomposite material for surface-enhanced Raman scattering,” Chemical Communications 49, 382-384 (2013).
[18] Yong Zhao, Lei Sun, Min Xi, Quan Feng, Chaoyang Jiang, and Hao Fong, “Electrospun TiO2 nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering,” Applied Materials & Interfaces 6, 5759-5767 (2014).
[19] Shannon M. Mahurin, Joshy John, Michael J. Sepaniak, and Sheng Dai, “A reusable surface-enhanced Raman scattering (SERS) substrate prepared by atomic layer deposition of alumina on a multi-layer gold and silver Film,” Applied Spectroscopy 65, 417-422 (2011).
[20] Yi Lin, Christopher E. Bunker, K. A. Shiral Fernando, and John W. Connell, “Aqueously dispersed dilver nanoparticle-necorated boron nitride nanosheets for reusable, thermal oxidation-resistant surface enhanced Raman spectroscopy (SERS) devices,” Applied Materials & Interfaces 4, 1110-1117 (2012).
[21] Baoliang Lv, Yao Xu, Hong Tian, Dong Wu, and Yuhan Sun, “Synthesis of Fe3O4\SiO2\Ag nanoparticles and its application in surface-enhanced Raman scattering,” Journal of Solid State Chemistry 183, 2968-2973 (2010).
[22] Dan Li, Da-Wei Li, Yang Li, John S. Fossey, and Yi-Tao Long, “Cyclic electroplating and stripping of silver on Au@SiO2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering,” Journal of Materials Chemistry 20, 3688-3693 (2010).
[23] Sanjoy Mondal, Utpal Rana, and Sudip Malik, “Facile decoration of polyaniline fiber with Ag nanoparticles for recyclable SERS substrate,” Applied Materials & Interfaces 7, 10457-10465 (2015).
[24] Irene Vassalini, Enzo Rotunno, Laura Lazzarini, and Ivano Alessandri, “Stainless gold nanorods: preserving shape, optical properties, and SERS activity in oxidative environment,” Applied Materials & Interfaces 7, 18794-18802 (2015).
[25] Thomas Siegfried, Martin Kind, Andreas Terfort, Olivier J. F. Martin, Michael Zharnikov, Nirmalya Ballav, and Hans Sigg, Journal of Raman Spectroscopy 44, 170-175 (2013).
[26] David E. King, “Oxidation of gold by ultraviolet light and ozone at 25 °C,” Journal of Vacuum Science & Technology B 13, 1247-1253 (1995).
[27] Jessica Torres, Christopher C. Perry, Stephen J. Bransfield, and D. Howard Fairbrother, “Radical reactions with organic thin films:  Chemical interaction of atomic oxygen with an X-ray modified self-Assembled monolayer,” Journal of Physical Chemistry B 106, 6265-6272 (2002).
[28] Yun Han, Robert Lupitskyy, Tseng-Ming Chou, Christopher M. Stafford, Henry Du, and Svetlana Sukhishvili, “Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: A quantitative correlation,” Analytical Chemistry 83, 5873-5880 (2011).
[29] Hungchun Tsaia, Emily Hua, Kuoguang Pernga, Minkar Chena, Jung-Chun Wua, and Yee-Shyi Changb, “Instability of gold oxide Au2O3,” Surface Science Letters 537, 447-450 (2003).
[30] Luis K. Ono, and Beatriz Roldan Cuenya, “Formation and thermal stability of Au2O3 on gold nanoparticles:  Size and support effects,” Journal of Physical Chemistry C 112, 4676-4686 (2008).
[31] Yu-Lun Liu, Cheng-Yi Fang, Chen-Chieh Yu, Tai-Chi Yang, and Hsuen-Li Chen, “Controllable Localized Surface Plasmonic Resonance Phenomena in Reduced Gold Oxide Films,” Chemistry of Materials 26, 1799-1806 (2014).
[32] Smekal, Adolf, “Zur Quantentheorie der Dispersion,” Die Naturwissenschaften 11, 873-875 (1923).
[33] Z. Zhu, T. Zhu, and Z. Liu, “Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling,” Nanotechnology 15, 357-364 (2004).
[34] J.R. Ferraro, “introductory Raman spectroscopt,” (1994).
[35] Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., “Raman spectra of pyridine adsorbed at a silver electrode,” Chemical Physics Letters 26, 163-166 (1974).
[36] David L. Jeanmaire, and Richard P. Van Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” Journal of Electroanalytical Chemistry 84, 1-20 (1977).
[37] M. Grant Albrecht, J. Alan Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” Journal of the American Chemical Society 99, 5215-5217 (1977).
[38] K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz, “The optical properties of metal Nanoparticles:  The influence of size, shape, and dielectric environment,” Journal of Physical Chemistry B 107, 668-677 (2003).
[39] M. Kerker, D.-S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles,” Applied Optics 19, 3373-3388 (1980).
[40] A. Otto, “Light scattering in solid,” Topics in Applied Physics IV 54, 289 (1984).
[41] A Otto, I Mrozek, H Grabhorn and W Akemann, “Surface-enhanced Raman scattering,” Journal of Physics: Condensed Matter 4, 1143-1212 (1992).
[42] Alan Campion and Patanjali Kambhampati, “Surface-enhanced Raman scattering,” Chemical Society Reviews 27, 241-250 (1998).
[43] J. D. Jiang, E. Burstein, and H. Kobayashi, “Resonant Raman scattering by crystal-violet molecules adsorbed on a smooth gold surface: Evidence for a charge-transfer excitation,” Physical Review Letters 57, 1793-1796 (1986).
[44] Juan F. Arenas, Mark S. Woolley, Isabel López Tocón, Juan C. Otero, and Juan I. Marcos, “Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states,” Journal of Chemical Physics 112, 7669-7683 (2000).
[45] Sujit Kumar Ghosh and Tarasankar Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:  From theory to applications,” Chemical Reviews 107, 4797-4863 (2007).
[46] LinLin Zhao, K. Lance Kelly, and George C. Schatz, “The Extinction Spectra of Silver Nanoparticle Arrays:  Influence of Array Structure on Plasmon Resonance Wavelength and Width†,” Journal of Physical Chemistry B 107, 7343-7350 (2003).
[47] Thearith Ung, Luis M. Liz-Marzán, and Paul Mulvaney, “Optical Properties of Thin Films of Au@SiO2 Particles,” Journal of Physical Chemistry B 105, 3441-3452 (2001).
[48] W.B. Cai, B. Ren, X.Q. Li, C.X. She, F.M. Liu, X.W. Cai, and Z.Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surface Science 406, 9-22 (1998).
[49] Hua-Zhong Yu, Jin Zhang, Hao-Li Zhang, and Zhong-Fan Liu, “Surface-enhanced Raman scattering (SERS) from azobenzene self-assembled ‘sandwiches’,” Langmuir 15, 16-19 (1999).
[50] Dan Li, Da-Wei Li, Yang Li, John S. Fossey, and Yi-Tao Long, “Cyclic electroplating and stripping of silver on Au@SiO2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering,” Journal of Materials Chemistry 20, 3688-3693 (2010).
[51] Jaehong Lee, Jungmok Seo, Dayeong Kim, Sera Shin, Sanggeun Lee, Chandreswar Mahata, Hyo-Sung Lee, Byung-Wook Min, and Taeyoon Lee, “Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates,” Applied Materials & Interfaces 6, 9053-9060 (2014).
[52] Soumen Dutta, Sougata Sarkar, Chaiti Ray, Anindita Roy, Ramkrishna Sahoo, and Tarasankar Pal, “Mesoporous gold and palladium nanoleaves from liquid–liquid interface: Enhanced catalytic activity of the palladium analogue toward hydrazine-assisted room-temperature 4-nitrophenol reduction,” ACS Applied Materials & Interfaces 6, 9134-9143 (2014).
[53] Takashi Miyazaki, Ray Hasegawa, Hajime Yamaguchi, Haruhi Oh-oka, Hitoshi Nagato, Isao Amemiya, and Shuichi Uchikoga, “Electrical Control of Plasmon Resonance of Gold Nanoparticles Using Electrochemical Oxidation,” Journal of Physical Chemistry C 113, 8484-8490 (2009).
[54] S.J Xia, V.I Birss, “A multi-technique study of compact and hydrous Au oxide growth in 0.1 M sulfuric acid solutionsOriginal Research Article,” ElectroAnalytical Chemistry 500, 562-573 (2001).
[55] C. Yan, A. Gölzhäuser, and M. Grunze, “Formation of alkanethiolate self-assembled monolayers on oxidized gold surfaces,” Langmuir 15, 2414-2419 (1999).
[56] James L. Gole, R. Woodward, J. S. Hayden, and David A. Dixon, “Gas-phase oxidation of silver: the reaction of silver clusters with ozone,” Journal of Physical Chemistry 89, 4905-4908 (1985).
Chapter 4.
[1] I-Chi Ni, Su-Ching Yang, Cheng-Wei Jian, Chih-Shin Luo, Watson Kuo, Kuan-Jiuh Lin, and Shien-Der Tzeng, “Formation mechanism, patterning, and physical properties of gold-nanoparticle films assembled by an interaction-controlled centrifugal method,” Journal of Physical Chemistry C 116, 8095-8101 (2012).
[2] Amir Zabet-Khosousi, Paul-Emile Trudeau, Yoshinori Suganuma, Al-Amin Dhirani, and Bryan Statt, “Metal to insulator transition in films of molecularly linked gold nanoparticles,” Physical Review Letters 96, 156403 (2006).
[3] Yvonne Joseph, Antun Peić, Xudong Chen, Josef Michl, Tobias Vossmeyer, and Akio Yasuda, “Vapor sensitivity of networked gold nanoparticle chemiresistors:  importance of flexibility and resistivity of the interlinkage”, Journal of Physical Chemistry C 111, 12855-12859 (2007).
[4] Fan-Wu Zeng, Xiao-Xia Liu, Dermot Diamond, King Tong Lau, “Humidity sensors based on polyaniline nanofibresOriginal Research Article,” Sensors and Actuators B 143, 530-534 (2010).
[5] Qin Kuang, Changshi Lao, Zhong Lin Wang, Zhaoxiong Xie, and Lansun Zheng, “High-sensitivity humidity sensor based on a single SnO2 nanowire,” Journal of the American Chemical Society 129, 6070-6071 (2007).
[6] Eunyeong Kim, Sung Yeon Kim, Gyuha Jo, Suhan Kim, and Moon Jeong Park, “Colorimetric and resistive polymer electrolyte thin films for real-time humidity sensors,” ACS Applied Materials & Interfaces 4, 5179-5187 (2012).
[7] Dongzhi Zhang, Yan’e Sun, Peng Li, and Yong Zhang, “Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing,” ACS Applied Materials & Interfaces 8, 14142-14149 (2016).
[8] Stefano Borini, Richard White, Di Wei, Michael Astley, Samiul Haque, Elisabetta Spigone, Nadine Harris, Jani Kivioja, and Tapani Ryhänen, “Ultrafast graphene oxide humidity sensors,” ACS Nano 7, 12, 11166-11173 (2013).
[9] Mansoor Anbia, and Seyyed Ebrahim Moosavi Fard, “Humidity sensing properties of Ce-doped nanoporous ZnO thin film prepared by sol-gel method,” Journal of rare earths 30, 38-42 (2012).
[10] Ramazan Demir, Salih Okur, and Mavişe Şeker, “Electrical characterization of CdS nanoparticles for humidity sensing applications,” Industrial & Engineering Chemistry Research 51, 3300-3313 (2012).
[11] H. Wohltjen, “Colloidal Metal−Insulator−Metal Ensemble Chemiresistor Sensor,” Analytical Chemistry 70, 2856-2859 (1998).
[12] Ho-Cheng Lee, Chun-Yi Wang, and Che-Hsin Lin, “High-performance humidity sensors utilizing dopamine biomolecule-coated gold nanoparticles,” Sensors and Actuators B 191, 204-210 (2014).
[13] Jisun Im, Amol Chandekar, and James E. Whitten, “Anomalous vapor sensor response of a fluorinated Alkylthiol-protected gold nanoparticle film,” Langmuir 25, 4288-4292 (2009).
[14] Nadejda Krasteva, Isabelle Besnard, Berit Guse, Roland E. Bauer, Klaus Müllen, Akio Yasuda, and Tobias Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications,” Nano Letters , 2, 551-555 (2002)
[15] N. Krasteva, Y. Fogel, R. E. Bauer, K. Müllen, Y. Joseph, N. Matsuzawa, A. Yasuda, and T. Vossmeyer, “Vapor Sorption and electrical response of Au-nanoparticle– dendrimer composites,” Advanced Functional Materials 17, 881-888 (2007).
[16] M. H. Klopffer and B. Flaconneche, “Transport properdines of gases in polymers: Bibliographic review,” Oil & Gas Science and Technology 56, 223-244 (2001).
[17] Y. Tsujita, “Gas sorption and permeation of glassy polymers with microvoids,” Progress in Polymer Science 28, 1377-1401 (2003).
[18] Roger H. Terrill, Timothy A. Postlethwaite, Chun-hsien Chen, Chi-Duen Poon, Andreas Terzis, Aidi Chen, James E. Hutchison, Michael R. Clark, and George Wignall, “Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters,” Journal of the American Chemical Society 117, 12537-12548 (1995).
[19] Edith Chow, Karl-Heinz Müller, Erika Davies, Burkhard Raguse, Lech Wieczorek, James S. Cooper, and Lee J. Hubble, “Characterization of the sensor response of gold nanoparticle chemiresistors,” Journal of Physical Chemistry C, 2010,114, 17529-17534 (2010).
[20] Hans-Jürgen Butt, Karlheinz Graf, and Michael Kappl, “Physics and Chemistry of Interfaces,” WILEY-VCH, 2003
Chapter 5.
[1] T. J. Seebeck, “Magnetic polarization of metals and minerals,” Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin, 265 (1825).
[2] Sootsman JR, Chung DY, and Kanatzidis MG., “New and old concepts in thermoelectric materials,” Angew Chem Int Ed Engl 48, 8616-8639 (2009).
[3] Khang Hoang, Keyur Desai, and S. D. Mahanti, “Charge ordering and self-assembled nanostructures in a fcc Coulomb lattice gas,” Physical Review B 72, 064102 (2005).
[4] B. C. Sales, “Thermoelectric materials. Smaller is cooler,” Science 295, 1248-1249 (2002).
[5] GS Nolas, M Kaeser, RT Littleton IV, and TM Tritt, “High figure of merit in partially filled ytterbium skutterudite materials,” Applied Physics Letters 77, 1855-1857 (2000).
[6] Nick P. Blake, Susan Latturner, and J. Daniel Bryan, “Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30,” Journal of Chemical Physics 115, 8060-8073 (2001).
[7] J. Yanga and G. P. Meisner, “Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds,” Applied Physics Letters 85, 1140-1142 (2004).
[8] Yu-Shen Liu and Yu-Chang Chen, “Seebeck coefficient of thermoelectric molecular junctions: First-principles calculations,” Physical Review B 79, 193101 (2009).
[9] Yu-Shen Liu, Yi-Ren Chen and Yu-Chang Chen, “Thermoelectric efficiency in nanojunctions: A comparison between atomic junctions and molecular junctions,” ACS Nano 3, 3497-2504 (2009).
[10] J. R. Widawsky, W. Chen, H. Vázquez, T. Kim, R. Breslow, M. S. Hybertsen, and L. Venkataraman, Nano Letters 13, 2889-2894 (2013).
[11] Pramod Reddy, Sung-Yeon Jang, Rachel A. Segalman, and Arun Majumdar, “Thermoelectricity in molecular junctions,” Science 315, 1568-1571 (2007).
[12] Jonathan R. Widawsky, Pierre Darancet, Jeffrey B. Neaton, and Latha Venkataraman, “Simultaneous Determination of Conductance and Thermopower of Single Molecule Junctions,” Nano Letters 12, 354-358 (2012).
[13] Wang B, Xing YX, Wei YD, Wan LH, Wang J, “The thermoelectric transport through carbon chains,” Carbon 43, 2786-2791 (2005).
[14] Justin P. Bergfield, Michelle A. Solis, and Charles A. Stafford, “Giant thermoelectric effect from transmission supernodes,” ACS Nano 4, 5314-5320 (2010).
[15] Yonatan Dubi and Massimiliano Di Ventra, “Thermoelectric effects in nanoscale junctions,” Nano Letters 9, 97-101 (2008).
[16] Makusu Tsutsui and Masateru Taniguchi, “Single molecule electronics and devices,” Sensors 12, 7259-7298 (2012).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊