|
Chapter 1. [1] Drexler, K. Eric, Engines of Creation: The coming era of nanotechnology. Doubleday., 1986, ISBN 0-385-19973-2. [2] K. D. Hermanson, S. O. Lumsdon, J. P. Williams, and O. D. Velev, “Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions”, Science 294, 1082-1086 (2001). [3] Bernard P. Binks, “Particles as surfactants—similarities and differences”, Current Opinion in Colloid & Interface Science 7, 21-41 (2002). [4] Venugopal Santhanam, Jia Liu, Rajan Agarwal, and Ronald P. Andres, “Self-assembly of uniform monolayer arrays of nanoparticles”, Langmuir 19, 7881-7887 (2003). [5] Junfeng Zhai, Yuling Wang, Yueming Zhai and Shaojun Dong, “Rapid fabrication of Au nanoparticle films with the aid of centrifugal force”, Nanotechnology 20, 055609 (2009). [6] J. J. Diao, F. S. Qiu, G. D. Chen, and M. E. Reeves, “Surface vertical deposition for gold nanoparticle film”, Journal of Physics D: Applied Physics, 2003 36, L25-27. [7] I-Chi Ni, Su-Ching Yang, Cheng-Wei Jian, Chih-Shin Luo, Watson Kuo, Kuan-Jiuh Lin, and Shien-Der Tzeng, “Formation mechanism, patterning, and physical properties of gold-nanoparticle films assembled by an interaction-controlled centrifugal method”, Journal of Physical Chemistry C 116, 8095-8101 (2012). [8] Maya Zayats, Andrei B. Kharitonov, Svetlana P. Pogorelova, Oleg Lioubashevski, Eugenii Katz, and Itamar Willner, “Probing photoelectrochemical processes in Au−CdS nanoparticle arrays by surface plasmon resonance: application for the detection of acetylcholine esterase inhibitors”, Journal of the American Chemical Society 125, 16006-160014 (2003). [9] Richard W. Taylor, Rubén Esteban, Sumeet Mahajan, Javier Aizpurua, and Jeremy J. Baumberg, “Optimizing SERS from gold nanoparticle clusters: addressing the near field by an embedded chain plasmon model”, Journal of Physical Chemistry C 120, 10512-10522 (2016). [10] H. Yockell-Lelièvre, F. Lussier, and J.-F. Masson, “Influence of the particle shape and density of self-Assembled gold nanoparticle sensors on LSPR and SERS”, Journal of Physical Chemistry C 119, 28577-28585 (2015). [11] Jun Yin, Tao Wu, Jibin Song, Qian Zhang, Shiyong Liu, Rong Xu, and Hongwei Duan, “SERS-active nanoparticles for sensitive and selective detection of cadmium ion”, Chemistry of Materials 23, 4756-4764 (2011). [12] Hao-Tse Hsiao, I-Chih Ni, Shien-Der Tzeng, Wei-Fan Lin and Chu-Hsuan Lin, “The n-type Ge photodetectors with gold nanoparticles deposited to enhance the responsivity”, Nanoscale Research Letters 9, 640-646 (2014). [13] Sheng-Han Tu, Da-Ge Ruan, Shien-Der Tzeng, I-Chi Ni, and Chih-Ming Wang, “Optical properties of InGaN/GaN multiquantum wells light-emitting diode with one-dimensional Au nanoparticle grating”, Journal of Nanophotonics 8, 084097 (2014). [14] Hideyuki Nakanishi, Kyle J. M. Bishop, Bartlomiej Kowalczyk, Abraham Nitzan, Emily A. Weiss, Konstantin V. Tretiakov, Mario M. Apodaca, Rafal Klajn, J. Fraser Stoddart, and Bartosz A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles “, Nature 460, 371-375 (2009). [15] Michael Galperin, Mark A. Ratner, and Abraham Nitzan, “Hysteresis, switching, and negative differential resistance in molecular junctions: a polaron model”, Nano Letters 5, 125-130 (2005). [16] Kuznetsov Alexander M., “Negative differential resistance and switching behavior of redox-mediated tunnel contact”, Journal of Chemical Physics 127, 084710 (2007). [17] Cheng-Wei Jiang, I-Chih Ni, Shien-Der Tzeng, Cen-Shawn Wu and Watson Kuo, “Identification of Mott insulators and Anderson insulators in self-assembled gold nanoparticles thin films”, Nanoscale 6, 5887-5893 (2014). [18] Nadejda Krasteva, Isabelle Besnard, Berit Guse, Roland E. Bauer, Klaus Müllen, Akio Yasuda, and Tobias Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications”, Nano Letters 2, 551-555 (2002). [19] Yvonne Joseph, Antun Peić, Xudong Chen, Josef Michl, Tobias Vossmeyer, and Akio Yasuda, “Vapor sensitivity of networked gold nanoparticle chemiresistors: importance of flexibility and resistivity of the interlinkage”, Journal of Physical Chemistry C 111, 12855-12859 (2007). [20] Lee J. Hubble, Edith Chow, James S. Cooper, Melissa Webster, Karl-Heinz Müller, Lech Wieczoreka and Burkhard Raguse, “Gold nanoparticle chemiresistors operating in biological fluids”, Lab on a Chip 12, 3040-3048 (2012). [21] Zheng Guo, Zhong-Gang Liu, Xian-Zhi Yao, Kai-Sheng Zhang, Xing Chen, Jin-Huai Liu, and Xing-Jiu Huang, “A molecular-gap device for specific determination of mercury ions”, Scientific Reports 3, 3115 (2013). [22] Cheng-Wei Jiang, I.-Chih Ni, Shien-Der Tzeng, and Watson Kuo, “Nearly isotropic piezoresistive response due to charge detour conduction in nanoparticle thin films”, Scientific Reports 5, 11939 (2016). Chapter 2. [1] Slot JW, Geuze HJ, “A new method of preparing gold probes for multiple-labeling cytochemistry,” European Journal of Cell Biology 38, 87-93 (1985). [2] Kenneth R. Brown, Daniel G. Walter, and Michael J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chemistry of Materials 12, 306-313 (2000). [3] Stephan Link and Mostafa A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” Journal of Physical Chemistry B 103, 4212-4217 (1999). [4] Guoping Chen, Michiaki Takezawa, Naoki Kawazoe, Tetsuya Tateishi, “Preparation of cationic gold nanoparticles for gene delivery,” The Open Biotechnology Journal 2, 152-156 (2008). [5] Kensuke Naka, Hideaki Itoh, Yoshihiro Tampo, and Yoshiki Chujo, “Effect of gold nanoparticles as a support for the oligomerization of l-cysteine in an aqueous solution,” Langmuir 19, 5546-5549 (2003). [6] Lingyan Zhang, Ruo Yuan, Yaqing Chai, Xuelian Li “Investigation of the electrochemical and electrocatalytic behavior of positively charged gold nanoparticle and l-cysteine film on an Au electrode,” Analytica Chimica Acta 596, 99-105 (2007). [7] Y. J. Zhang, “Investigation of gold and silver nanoparticles on absorption heating and scattering imaging,” Plasmonics 6, 393-397 (2011). [8] Ji-Young Kim and Jae-Seung Lee, “Synthesis and thermally reversible assembly of DNA−gold nanoparticle cluster conjugates,” Nano Letters 9, 12, 4564-4569 (2009). [9] Chih-Ching Huang and Huan-Tsung Chang, “Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles,” Chemical Communications 12, 1215-1217 (2007). [10] M. Annadhasan, T. Muthukumarasamyvel, V. R. Sankar Babu, and N. Rajendiran, “Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium,” ACS Sustainable Chemistry and Engineering 2, 887-896 (2014). [11] Inhee Choi, Hyeon Don Song, Suseung Lee, Young In Yang, Taewook Kang, and Jongheop Yi, “Core–satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex,” Journal of the American Chemical Society 134, 12083-12090 (2012). [12] I-Chi Ni, Su-Ching Yang, Cheng-Wei Jian, Chih-Shin Luo, Watson Kuo, Kuan-Jiuh Lin, and Shien-Der Tzeng, “Formation mechanism, patterning, and physical properties of gold-nanoparticle films assembled by an interaction-controlled centrifugal method,” Journal of Physical Chemistry C 116, 8095-8101 (2012). Chapter 3. [1] I-Chi Ni, Su-Ching Yang, Cheng-Wei Jian, Chih-Shin Luo, Watson Kuo, Kuan-Jiuh Lin, and Shien-Der Tzeng, “Formation mechanism, patterning, and physical properties of gold-nanoparticle films assembled by an interaction-controlled centrifugal method,” Journal of Physical Chemistry C 116, 8095-8101 (2012). [2] Chi-Fan Chen, Shien-Der Tzeng, Hung-Ying Chen, Kuan-Jiuh Lin, and Shangjr Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” Journal of the American Chemical Society 130, 824-826 (2008). [3] R. Aroca, Surface-Enhanced Raman Spectroscopy; Wiley: New York, 2006. [4] Lev Dykmana and Nikolai Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chemical Society Reviews 41, 2256-2282 (2012). [5] Jeffrey N. Anker, W. Paige Hall, Olga Lyandres, Nilam C. Shah, Jing Zhao, and Richard P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials 7, 442-453 (2008). [6] Sujit Kumar Ghosh and Tarasankar Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chemical Reviews 107, 4797-4862 (2007). [7] Matthew E. Stewart, Christopher R. Anderton, Lucas B. Thompson, Joana Maria, Stephen K. Gray, John A. Rogers , and Ralph G. Nuzzo, “Nanostructured plasmonic sensors,” Chemical Reviews 108, 494-521 (2008). [8] Ying Fang, Nak-Hyun Seong, and Dana D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321, 388-392 (2008). [9] V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant, and M. Rothschild, “A Nanoparticle Convective Directed Assembly Process for the Fabrication of Periodic Surface Enhanced Raman Spectroscopy Substrates,” Advanced Materials 22, 4298-4302 (2010). [10] Xiao X. Han, Genin Gary Huang, Bing Zhao, and Yukihiro Ozaki, “Label-free highly sensitive detection of proteins in aqueous solutions using surface-enhanced Raman scattering,” Analytical Chemistry 81, 3329-3333 (2009). [11] Amy M. Michaels, Jiang, and Louis Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” Journal of Physical Chemistry B 104, 11965-11971 (2000). [12] Shuming Nie and Steven R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997). [13] Matthew J. Banholzer, Jill E. Millstone, Lidong Qina and Chad A. Mirkin, “Rationally designed nanostructures for surface-enhanced Raman spectroscopy,” Chemical Society Reviews 37, 885-897 (2008). [14] Aline Cerf, Gábor Molnár and Christophe Vieu, “Novel Approach for the assembly of highly efficient SERS substrates,” Applied Materials & Interfaces 1, 2544-2550 (2009). [15] Xianglin Li, Hailong Hu, Dehui Li, Zexiang Shen, Qihua Xiong, Shuzhou Li, and Hong Jin Fan, “Ordered array of gold semishells on TiO2 spheres: An ultrasensitive and recyclable SERS substrate,” Applied Materials & Interfaces 4, 2180-2185 (2012). [16] Godhuli Sinha, Laura E. Depero, and Ivano Alessandri, “Recyclable SERS substrates based on Au-coated ZnO nanorods,” Applied Materials & Interfaces 3, 2557-2563 (2011). [17] Xiaoxin Zou, Rafael Silva, Xiaoxi Huang, Jafar F. Al-Sharab and Tewodros Asefa, “A self-cleaning porous TiO2–Ag core–shell nanocomposite material for surface-enhanced Raman scattering,” Chemical Communications 49, 382-384 (2013). [18] Yong Zhao, Lei Sun, Min Xi, Quan Feng, Chaoyang Jiang, and Hao Fong, “Electrospun TiO2 nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering,” Applied Materials & Interfaces 6, 5759-5767 (2014). [19] Shannon M. Mahurin, Joshy John, Michael J. Sepaniak, and Sheng Dai, “A reusable surface-enhanced Raman scattering (SERS) substrate prepared by atomic layer deposition of alumina on a multi-layer gold and silver Film,” Applied Spectroscopy 65, 417-422 (2011). [20] Yi Lin, Christopher E. Bunker, K. A. Shiral Fernando, and John W. Connell, “Aqueously dispersed dilver nanoparticle-necorated boron nitride nanosheets for reusable, thermal oxidation-resistant surface enhanced Raman spectroscopy (SERS) devices,” Applied Materials & Interfaces 4, 1110-1117 (2012). [21] Baoliang Lv, Yao Xu, Hong Tian, Dong Wu, and Yuhan Sun, “Synthesis of Fe3O4\SiO2\Ag nanoparticles and its application in surface-enhanced Raman scattering,” Journal of Solid State Chemistry 183, 2968-2973 (2010). [22] Dan Li, Da-Wei Li, Yang Li, John S. Fossey, and Yi-Tao Long, “Cyclic electroplating and stripping of silver on Au@SiO2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering,” Journal of Materials Chemistry 20, 3688-3693 (2010). [23] Sanjoy Mondal, Utpal Rana, and Sudip Malik, “Facile decoration of polyaniline fiber with Ag nanoparticles for recyclable SERS substrate,” Applied Materials & Interfaces 7, 10457-10465 (2015). [24] Irene Vassalini, Enzo Rotunno, Laura Lazzarini, and Ivano Alessandri, “Stainless gold nanorods: preserving shape, optical properties, and SERS activity in oxidative environment,” Applied Materials & Interfaces 7, 18794-18802 (2015). [25] Thomas Siegfried, Martin Kind, Andreas Terfort, Olivier J. F. Martin, Michael Zharnikov, Nirmalya Ballav, and Hans Sigg, Journal of Raman Spectroscopy 44, 170-175 (2013). [26] David E. King, “Oxidation of gold by ultraviolet light and ozone at 25 °C,” Journal of Vacuum Science & Technology B 13, 1247-1253 (1995). [27] Jessica Torres, Christopher C. Perry, Stephen J. Bransfield, and D. Howard Fairbrother, “Radical reactions with organic thin films: Chemical interaction of atomic oxygen with an X-ray modified self-Assembled monolayer,” Journal of Physical Chemistry B 106, 6265-6272 (2002). [28] Yun Han, Robert Lupitskyy, Tseng-Ming Chou, Christopher M. Stafford, Henry Du, and Svetlana Sukhishvili, “Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: A quantitative correlation,” Analytical Chemistry 83, 5873-5880 (2011). [29] Hungchun Tsaia, Emily Hua, Kuoguang Pernga, Minkar Chena, Jung-Chun Wua, and Yee-Shyi Changb, “Instability of gold oxide Au2O3,” Surface Science Letters 537, 447-450 (2003). [30] Luis K. Ono, and Beatriz Roldan Cuenya, “Formation and thermal stability of Au2O3 on gold nanoparticles: Size and support effects,” Journal of Physical Chemistry C 112, 4676-4686 (2008). [31] Yu-Lun Liu, Cheng-Yi Fang, Chen-Chieh Yu, Tai-Chi Yang, and Hsuen-Li Chen, “Controllable Localized Surface Plasmonic Resonance Phenomena in Reduced Gold Oxide Films,” Chemistry of Materials 26, 1799-1806 (2014). [32] Smekal, Adolf, “Zur Quantentheorie der Dispersion,” Die Naturwissenschaften 11, 873-875 (1923). [33] Z. Zhu, T. Zhu, and Z. Liu, “Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling,” Nanotechnology 15, 357-364 (2004). [34] J.R. Ferraro, “introductory Raman spectroscopt,” (1994). [35] Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., “Raman spectra of pyridine adsorbed at a silver electrode,” Chemical Physics Letters 26, 163-166 (1974). [36] David L. Jeanmaire, and Richard P. Van Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” Journal of Electroanalytical Chemistry 84, 1-20 (1977). [37] M. Grant Albrecht, J. Alan Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” Journal of the American Chemical Society 99, 5215-5217 (1977). [38] K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz, “The optical properties of metal Nanoparticles: The influence of size, shape, and dielectric environment,” Journal of Physical Chemistry B 107, 668-677 (2003). [39] M. Kerker, D.-S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles,” Applied Optics 19, 3373-3388 (1980). [40] A. Otto, “Light scattering in solid,” Topics in Applied Physics IV 54, 289 (1984). [41] A Otto, I Mrozek, H Grabhorn and W Akemann, “Surface-enhanced Raman scattering,” Journal of Physics: Condensed Matter 4, 1143-1212 (1992). [42] Alan Campion and Patanjali Kambhampati, “Surface-enhanced Raman scattering,” Chemical Society Reviews 27, 241-250 (1998). [43] J. D. Jiang, E. Burstein, and H. Kobayashi, “Resonant Raman scattering by crystal-violet molecules adsorbed on a smooth gold surface: Evidence for a charge-transfer excitation,” Physical Review Letters 57, 1793-1796 (1986). [44] Juan F. Arenas, Mark S. Woolley, Isabel López Tocón, Juan C. Otero, and Juan I. Marcos, “Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states,” Journal of Chemical Physics 112, 7669-7683 (2000). [45] Sujit Kumar Ghosh and Tarasankar Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications,” Chemical Reviews 107, 4797-4863 (2007). [46] LinLin Zhao, K. Lance Kelly, and George C. Schatz, “The Extinction Spectra of Silver Nanoparticle Arrays: Influence of Array Structure on Plasmon Resonance Wavelength and Width†,” Journal of Physical Chemistry B 107, 7343-7350 (2003). [47] Thearith Ung, Luis M. Liz-Marzán, and Paul Mulvaney, “Optical Properties of Thin Films of Au@SiO2 Particles,” Journal of Physical Chemistry B 105, 3441-3452 (2001). [48] W.B. Cai, B. Ren, X.Q. Li, C.X. She, F.M. Liu, X.W. Cai, and Z.Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surface Science 406, 9-22 (1998). [49] Hua-Zhong Yu, Jin Zhang, Hao-Li Zhang, and Zhong-Fan Liu, “Surface-enhanced Raman scattering (SERS) from azobenzene self-assembled ‘sandwiches’,” Langmuir 15, 16-19 (1999). [50] Dan Li, Da-Wei Li, Yang Li, John S. Fossey, and Yi-Tao Long, “Cyclic electroplating and stripping of silver on Au@SiO2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering,” Journal of Materials Chemistry 20, 3688-3693 (2010). [51] Jaehong Lee, Jungmok Seo, Dayeong Kim, Sera Shin, Sanggeun Lee, Chandreswar Mahata, Hyo-Sung Lee, Byung-Wook Min, and Taeyoon Lee, “Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates,” Applied Materials & Interfaces 6, 9053-9060 (2014). [52] Soumen Dutta, Sougata Sarkar, Chaiti Ray, Anindita Roy, Ramkrishna Sahoo, and Tarasankar Pal, “Mesoporous gold and palladium nanoleaves from liquid–liquid interface: Enhanced catalytic activity of the palladium analogue toward hydrazine-assisted room-temperature 4-nitrophenol reduction,” ACS Applied Materials & Interfaces 6, 9134-9143 (2014). [53] Takashi Miyazaki, Ray Hasegawa, Hajime Yamaguchi, Haruhi Oh-oka, Hitoshi Nagato, Isao Amemiya, and Shuichi Uchikoga, “Electrical Control of Plasmon Resonance of Gold Nanoparticles Using Electrochemical Oxidation,” Journal of Physical Chemistry C 113, 8484-8490 (2009). [54] S.J Xia, V.I Birss, “A multi-technique study of compact and hydrous Au oxide growth in 0.1 M sulfuric acid solutionsOriginal Research Article,” ElectroAnalytical Chemistry 500, 562-573 (2001). [55] C. Yan, A. Gölzhäuser, and M. Grunze, “Formation of alkanethiolate self-assembled monolayers on oxidized gold surfaces,” Langmuir 15, 2414-2419 (1999). [56] James L. Gole, R. Woodward, J. S. Hayden, and David A. Dixon, “Gas-phase oxidation of silver: the reaction of silver clusters with ozone,” Journal of Physical Chemistry 89, 4905-4908 (1985). Chapter 4. [1] I-Chi Ni, Su-Ching Yang, Cheng-Wei Jian, Chih-Shin Luo, Watson Kuo, Kuan-Jiuh Lin, and Shien-Der Tzeng, “Formation mechanism, patterning, and physical properties of gold-nanoparticle films assembled by an interaction-controlled centrifugal method,” Journal of Physical Chemistry C 116, 8095-8101 (2012). [2] Amir Zabet-Khosousi, Paul-Emile Trudeau, Yoshinori Suganuma, Al-Amin Dhirani, and Bryan Statt, “Metal to insulator transition in films of molecularly linked gold nanoparticles,” Physical Review Letters 96, 156403 (2006). [3] Yvonne Joseph, Antun Peić, Xudong Chen, Josef Michl, Tobias Vossmeyer, and Akio Yasuda, “Vapor sensitivity of networked gold nanoparticle chemiresistors: importance of flexibility and resistivity of the interlinkage”, Journal of Physical Chemistry C 111, 12855-12859 (2007). [4] Fan-Wu Zeng, Xiao-Xia Liu, Dermot Diamond, King Tong Lau, “Humidity sensors based on polyaniline nanofibresOriginal Research Article,” Sensors and Actuators B 143, 530-534 (2010). [5] Qin Kuang, Changshi Lao, Zhong Lin Wang, Zhaoxiong Xie, and Lansun Zheng, “High-sensitivity humidity sensor based on a single SnO2 nanowire,” Journal of the American Chemical Society 129, 6070-6071 (2007). [6] Eunyeong Kim, Sung Yeon Kim, Gyuha Jo, Suhan Kim, and Moon Jeong Park, “Colorimetric and resistive polymer electrolyte thin films for real-time humidity sensors,” ACS Applied Materials & Interfaces 4, 5179-5187 (2012). [7] Dongzhi Zhang, Yan’e Sun, Peng Li, and Yong Zhang, “Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing,” ACS Applied Materials & Interfaces 8, 14142-14149 (2016). [8] Stefano Borini, Richard White, Di Wei, Michael Astley, Samiul Haque, Elisabetta Spigone, Nadine Harris, Jani Kivioja, and Tapani Ryhänen, “Ultrafast graphene oxide humidity sensors,” ACS Nano 7, 12, 11166-11173 (2013). [9] Mansoor Anbia, and Seyyed Ebrahim Moosavi Fard, “Humidity sensing properties of Ce-doped nanoporous ZnO thin film prepared by sol-gel method,” Journal of rare earths 30, 38-42 (2012). [10] Ramazan Demir, Salih Okur, and Mavişe Şeker, “Electrical characterization of CdS nanoparticles for humidity sensing applications,” Industrial & Engineering Chemistry Research 51, 3300-3313 (2012). [11] H. Wohltjen, “Colloidal Metal−Insulator−Metal Ensemble Chemiresistor Sensor,” Analytical Chemistry 70, 2856-2859 (1998). [12] Ho-Cheng Lee, Chun-Yi Wang, and Che-Hsin Lin, “High-performance humidity sensors utilizing dopamine biomolecule-coated gold nanoparticles,” Sensors and Actuators B 191, 204-210 (2014). [13] Jisun Im, Amol Chandekar, and James E. Whitten, “Anomalous vapor sensor response of a fluorinated Alkylthiol-protected gold nanoparticle film,” Langmuir 25, 4288-4292 (2009). [14] Nadejda Krasteva, Isabelle Besnard, Berit Guse, Roland E. Bauer, Klaus Müllen, Akio Yasuda, and Tobias Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications,” Nano Letters , 2, 551-555 (2002) [15] N. Krasteva, Y. Fogel, R. E. Bauer, K. Müllen, Y. Joseph, N. Matsuzawa, A. Yasuda, and T. Vossmeyer, “Vapor Sorption and electrical response of Au-nanoparticle– dendrimer composites,” Advanced Functional Materials 17, 881-888 (2007). [16] M. H. Klopffer and B. Flaconneche, “Transport properdines of gases in polymers: Bibliographic review,” Oil & Gas Science and Technology 56, 223-244 (2001). [17] Y. Tsujita, “Gas sorption and permeation of glassy polymers with microvoids,” Progress in Polymer Science 28, 1377-1401 (2003). [18] Roger H. Terrill, Timothy A. Postlethwaite, Chun-hsien Chen, Chi-Duen Poon, Andreas Terzis, Aidi Chen, James E. Hutchison, Michael R. Clark, and George Wignall, “Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters,” Journal of the American Chemical Society 117, 12537-12548 (1995). [19] Edith Chow, Karl-Heinz Müller, Erika Davies, Burkhard Raguse, Lech Wieczorek, James S. Cooper, and Lee J. Hubble, “Characterization of the sensor response of gold nanoparticle chemiresistors,” Journal of Physical Chemistry C, 2010,114, 17529-17534 (2010). [20] Hans-Jürgen Butt, Karlheinz Graf, and Michael Kappl, “Physics and Chemistry of Interfaces,” WILEY-VCH, 2003 Chapter 5. [1] T. J. Seebeck, “Magnetic polarization of metals and minerals,” Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin, 265 (1825). [2] Sootsman JR, Chung DY, and Kanatzidis MG., “New and old concepts in thermoelectric materials,” Angew Chem Int Ed Engl 48, 8616-8639 (2009). [3] Khang Hoang, Keyur Desai, and S. D. Mahanti, “Charge ordering and self-assembled nanostructures in a fcc Coulomb lattice gas,” Physical Review B 72, 064102 (2005). [4] B. C. Sales, “Thermoelectric materials. Smaller is cooler,” Science 295, 1248-1249 (2002). [5] GS Nolas, M Kaeser, RT Littleton IV, and TM Tritt, “High figure of merit in partially filled ytterbium skutterudite materials,” Applied Physics Letters 77, 1855-1857 (2000). [6] Nick P. Blake, Susan Latturner, and J. Daniel Bryan, “Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30,” Journal of Chemical Physics 115, 8060-8073 (2001). [7] J. Yanga and G. P. Meisner, “Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds,” Applied Physics Letters 85, 1140-1142 (2004). [8] Yu-Shen Liu and Yu-Chang Chen, “Seebeck coefficient of thermoelectric molecular junctions: First-principles calculations,” Physical Review B 79, 193101 (2009). [9] Yu-Shen Liu, Yi-Ren Chen and Yu-Chang Chen, “Thermoelectric efficiency in nanojunctions: A comparison between atomic junctions and molecular junctions,” ACS Nano 3, 3497-2504 (2009). [10] J. R. Widawsky, W. Chen, H. Vázquez, T. Kim, R. Breslow, M. S. Hybertsen, and L. Venkataraman, Nano Letters 13, 2889-2894 (2013). [11] Pramod Reddy, Sung-Yeon Jang, Rachel A. Segalman, and Arun Majumdar, “Thermoelectricity in molecular junctions,” Science 315, 1568-1571 (2007). [12] Jonathan R. Widawsky, Pierre Darancet, Jeffrey B. Neaton, and Latha Venkataraman, “Simultaneous Determination of Conductance and Thermopower of Single Molecule Junctions,” Nano Letters 12, 354-358 (2012). [13] Wang B, Xing YX, Wei YD, Wan LH, Wang J, “The thermoelectric transport through carbon chains,” Carbon 43, 2786-2791 (2005). [14] Justin P. Bergfield, Michelle A. Solis, and Charles A. Stafford, “Giant thermoelectric effect from transmission supernodes,” ACS Nano 4, 5314-5320 (2010). [15] Yonatan Dubi and Massimiliano Di Ventra, “Thermoelectric effects in nanoscale junctions,” Nano Letters 9, 97-101 (2008). [16] Makusu Tsutsui and Masateru Taniguchi, “Single molecule electronics and devices,” Sensors 12, 7259-7298 (2012).
|