跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/13 07:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Nimbalkar Dipak Bapurao
研究生(外文):Nimbalkar Dipak Bapurao
論文名稱:改性二氧化鈦光催化劑之電子順磁共振研究
論文名稱(外文):An Electron Paramagnetic Resonance Investigation of Modified Titanium Dioxide Photocatalysts
指導教授:柯學初
指導教授(外文):Shyue Chu Ke
學位類別:博士
校院名稱:國立東華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:174
中文關鍵詞:二氧化鈦電子順磁共振光催化
外文關鍵詞:TiO2Electron Paramagnetic Resonance (EPR)Photocatalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
TiO2的體積和表面性質對光催化應用具有重要意義。 更具體地說,光誘導電荷載體及其壽命在提高氧化還原反應速率方面發揮重要作用。 已經使用電子順磁共振光譜(EPR)來識別和表徵TiO 2表面/體積上的順磁性中心的性質,以及在光照射下對改性TiO 2光催化劑所涉及的機理進行分類。 我們主要集中在三種不同的策略,即摻雜,共摻雜和窄帶隙半導體耦合或發展與TiO2光催化劑的異質結,有利於光催化過程。
The bulk and surface properties of TiO2 is offering great significance for the photocatalysis application. More specifically, the photoinduced charge carriers and their lifetimes are playing an essential role in boosting the redox reaction rates. Electron Paramagnetic Resonance Spectroscopy (EPR) has been used to identify and characterize the nature of paramagnetic centers over the surface/bulk of TiO2 as well as to classify the mechanisms involved in modified TiO2 photocatalysts under light irradiation. We primarily concentrate on three different strategies, namely doping, codoping and narrow band gap semiconductors coupling or developing heterogeneous junction with TiO2 photocatalysts for advantageous the photocatalytic process.
The nitrogen (N) and sulfur (S) doped TiO2 nanocatalysts were synthesized by a sol-gel/hydrothermal method at low temperature. It is observed that S-doped TiO2 nanocatalysts are capable for decompose the highly toxic sulfur mustard chemical warfare agent under sunlight illumination and show superior decomposing rate than other doped nanocatalysts. Moreover, we explore study to understand the charge invention and trapping mechanisms in only S-doped TiO2 nanocatalysts heated at different temperatures. The doped sulfur not only absorbs the visible light but also help to delay the phase transformation from anatase to rutile. At higher temperature, doped sulfur atoms are physically depleted and removed along with lattice oxygen atoms which introduce several local surface structural defects into the TiO2 nanocatalysts. EPR studies clearly reveal that under visible light illumination photoinduced charge carrier are created and trapped in different defect sites as attributing O• and the Ti3+centers. The photocatalytic performance of RhB degradation in S-doped TiO2 nanocatalysts is noticeably enhanced up to 700 °C and later gradually lowered. Thus, we demonstrate the available Ti-O-S bonds, enhanced photoinduced charge carrier separation, and good crystallization are likely reason for improved photoactivity.
Codoping atoms is an effective way to understand the oxygen vacancies and how it influences with different dopants. Visible light active nitrogen (N), sulfur (S) and phosphorus (P), boron (B) codoped TiO2 nanocatalysts were synthesized by the hydrothermal and sol-gel method, respectively. The characterization results confirm the codopants nitrogen and sulfur atoms substituted the oxygen and titanium sites, wherein, boron and phosphorus substituted the oxygen and titanium sites respectively. These codopants created individually new intermediate states within the lattice leading to narrow the band gap of TiO2. In NS-codoped, EPR studies clearly show that maximum numbers of N• paramagnetic signal was found, which signifies that cationic sulfur favored to creates oxygen vacancies into the TiO2 lattice and further minimized by insertion of nitrogen atoms. On the other hand, P,B codoped TiO2 sample heated at different temperatures exhibits enhanced charge separation as evidenced of attributing O• and Ti3+ signal under visible light irradiation and can be the reason for superior MB degradation. However, in both (NS and PB) codoped samples dye degradation activity trend under visible light shows meaningful dissimilarity and that can be occurred due to the bulk oxygen vacancies mainly produced by these codopants.
Heterogeneous hybrid composites of TiO2-RGO/MoS2 have been synthesized using a hydrothermal method and characterization results displayed that the formation of the hybrid junction. In this hybrid composite, EPR studies show that the lattice Ti3+ signal decreased and at the same time equivalent amounts of the O• signal increased under UV light irradiation. These results suggest the interfacial charge transferred from TiO2 surface to the MoS2 surface active sites directly or through RGO nanosheets. RGO behaves like a conductor, it accepted only electrons and transported to the active sites through separating the potential level distance between the two semiconductors. These charge transfer processes lead to suppressing the recombination rate of the electron-hole pairs in the hybrid composite, which is advantageous for the catalytic efficiency.
TiO2/g-C3N4 nanocomposites attracted interest due to substantial band gap narrowing in conjunction with good visible-light photocatalytic activities, however, the origin of their photoactivity and the related fundamental mechanism has been poorly understood. Here, efficient visible-light-driven stable TiO2/g-C3N4 nanocomposites were prepared by thermal decomposition method as melamine directly heated over TiO2 nanoparticles and systematically studied by various effective characterization techniques. The XRD results clearly show that the heterogeneous junction is formed between TiO2 nanoparticles and g-C3N4 polymer. FTIR spectra display several conjugated cyano-functionalized groups produced and resided on the surface of TiO2 nanoparticles along with TiO2/g-C3N4 nanocomposites. In specific, EPR studies evidently reveals that three distinctly nature of blue light active paramagnetic defect species existed in the TiO2/g-C3N4 nanoparticles and their relative abundances are exclusively depending on the preparation methods and conditions. In correlation with EPR simulation and FTIR spectroscopy, we characterize for the first time, anionic cyanamide-functionalized defect species (as paramagnetic (N=C=N)•), that partially formed in the nanocomposites. Indeed, the unpaired electron interacted with two nearly equivalent nitrogen (N) nuclei (g and A-tensors) giving rise to quintet hyperfine signal.
Acknowledgements I
Abstract IV
Table of Contents VIII
List of Figures XII
List of Tables XVIII
List of Schemes XX
Chapter 1 Introduction and an Overview of Titanium (IV) Dioxide (TiO¬2)
1.1 Introduction 1
1.2 Titanium (IV) Dioxide 3
1.3 Titanium (IV) Dioxide Photocatalyst 7
1.4 Photocatalytic Activity of Titanium (IV) Dioxide 11
1.5 Modification of Titanium (IV) Dioxide 12
1.5.1 Metal Doped Titanium (IV) Dioxide 13
1.5.2 Non-metal Doped Titanium (IV) Dioxide 14
1.5.3 Co-Doped Titanium (IV) Dioxide 15
1.5.4 Heterogeneous Junction or Semiconductor Coupled with Titanium (IV) Dioxide 16
1.6 EPR Spectroscopy Study of Titanium (IV) Dioxide 18
1.7 Synthesis of Titanium (IV) Dioxide 23
1.8 Purpose of the Study 27
Chapter 2 Brief Introduction to the Theory, Applications of Electron Paramagnetic Resonance (EPR) Spectroscopy and Other Characterization Techniques
2.1 Electron Paramagnetic Resonance (EPR) Spectroscopy 30
2.1.1 Introduction 30
2.1.2 Basic Principle of EPR Spectroscopy 31
2.1.3 Sensitivity 33
2.1.4 Types of Interactions and Spin Hamiltonian 34
2.1.5 Hyperfine Interaction 35
2.1.6 Superhyperfine Interaction 35
2.1.7 The g tensor: Origin and Significance 37
2.1.8 The A tensor: Origin and Significance 39
2.1.9 Spin Trapping 41
2.1.10 Isotope Labeling 42
2.1.11 EasySpin Simulation 43
2.2 Ultraviolet-Visible (UV-Vis) Absorption Spectroscopy 45
2.3 X-ray Diffraction (XRD) 48
2.4 Field Emission Scanning Electron Microscopy (FE-SEM) 50
2.5 X-ray Photoelectron Spectroscopy (XPS) 52
2.6 Fourier Transform Infrared Spectroscopy (FTIR) 55
2.7 Photocatalytic Activity 57
Chapter 3 Doped Titanium (IV) Dioxide (TiO2)
3.1 N-doped, S-doped TiO2 nanocatalysts: synthesis, characterization and photocatalytic activity in the presence of sunlight 59
3.2.1 Introduction 59
3.2.2 Sample Preparation 62
3.2.3 Results and Discussion 62
3.2.4 Conclusions 71
3.2 Visible light active S-doped TiO2: local surface modification and charge separation evidence by EPR Spectroscopy 73
3.1.1 Introduction 73
3.1.2 Sample Preparation 75
3.1.3 Results and Discussion 77
3.1.4 Conclusions 90
Chapter 4 Codoped Titanium (IV) Dioxide (TiO2)
4.1 N-doped and NS-codoped TiO2 nanocatalysts studied in situ Electron Paramagnetic Resonance Spectroscopy 93
4.1.1 Introduction 93
4.1.2 Sample Preparation 95
4.1.3 Results and Discussion 97
4.1.4. Supporting Information 110
4.1.5 Conclusions 113
4.2 Phosphorus and Boron codoping into TiO2 nanoparticles; an avenue for enhancing the visible light photocatalytic activity 115
4.2.1 Introduction 115
4.2.2 Sample Preparation 117
4.2.3 Results and Discussion 119
4.2.4 Conclusions 126
Chapter 5 Semiconductors Coupled with Titanium (IV) Dioxide (TiO2)
5.1 Improved photocatalytic activity of RGO/MoS2 nanosheets decorated on TiO2 nanoparticles 129
5.1.1 Introduction 129
5.1.2 Sample Preparation 131
5.1.3 Results and Discussion 135
5.1.4 Supporting Information 146
5.1.5 Conclusions 147
5.2 Intermediate Defects Engineered in Fabricated TiO2/g-C3N4 Nanocomposites: Disclosed by in situ Spectroscopic Correlations 149
5.2.1 Introduction 149
5.2.2 Sample Preparation 152
5.2.3 Results and Discussion 153
5.2.4 Supporting Information 169
5.2.5 Conclusions 170
Chapter 6 Summary 171
References 175
1. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chemical Reviews, 1995, 95, 69-96.
2. A. L. Linsebigler, G. Lu and J. T. Yates, Chemical Reviews, 1995, 95, 735-758.
3. T. L. Thompson and J. T. Yates, Chem. Rev., 2006, 106, 4428.
4. X. Chen, S. Shen, L. Guo and S. S. Mao, Chemical Reviews, 2010, 110, 6503-6570.
5. H. Irie, Y. Watanabe and K. Hashimoto, The Journal of Physical Chemistry B, 2003, 107, 5483-5486.
6. B. O'Regan and M. Gratzel, Nature, 1991, 353, 737.
7. M. Gratzel, Nature, 2001, 414, 338-344.
8. JCPDS, no., 21-1272.
9. JCPDS, no., 21-1276.
10. JCPDS, no., 29-1360.
11. R. Marchand, L. Brohan and M. Tournoux, Materials Research Bulletin, 1980, 15, 1129-1133.
12. Z. Luo, A. S. Poyraz, C.-H. Kuo, R. Miao, Y. Meng, S.-Y. Chen, T. Jiang, C. Wenos and S. L. Suib, Chemistry of Materials, 2015, 27, 6-17.
13. A. Fujishima and K. Honda, Nature, 1972, 238, 37-38.
14. R. F. Howe and M. Gratzel, The Journal of Physical Chemistry, 1987, 91, 3906-3909.
15. Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka and T. Majima, Journal of the American Chemical Society, 2014, 136, 458-465.
16. T. Hirakawa and P. V. Kamat, Journal of the American Chemical Society, 2005, 127, 3928-3934.
17. B. K. Vijayan, N. M. Dimitrijevic, J. Wu and K. A. Gray, The Journal of Physical Chemistry C, 2010, 114, 21262-21269.
18. A. Honciuc, M. Laurin, S. Albu, M. Amende, M. Sobota, R. Lynch, P. Schmuki and J. Libuda, The Journal of Physical Chemistry C, 2010, 114, 20146-20154.
19. R. Argazzi, C. A. Bignozzi, T. A. Heimer, F. N. Castellano and G. J. Meyer, The Journal of Physical Chemistry B, 1997, 101, 2591-2597.
20. M. J. Llansola-Portoles, J. J. Bergkamp, D. Finkelstein-Shapiro, B. D. Sherman, G. Kodis, N. M. Dimitrijevic, D. Gust, T. A. Moore and A. L. Moore, The Journal of Physical Chemistry A, 2014, 118, 10631-10638.
21. J. Nowotny, T. Bak, M. K. Nowotny and L. R. Sheppard, The Journal of Physical Chemistry B, 2006, 110, 18492-18495.
22. A. Testino, I. R. Bellobono, V. Buscaglia, C. Canevali, M. D'Arienzo, S. Polizzi, R. Scotti and F. Morazzoni, Journal of the American Chemical Society, 2007, 129, 3564-3575.
23. N. M. Dimitrijevic, Z. V. Saponjic, B. M. Rabatic, O. G. Poluektov and T. Rajh, The Journal of Physical Chemistry C, 2007, 111, 14597-14601.
24. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D. W. Bahnemann, Chemical Reviews, 2014, 114, 9919-9986.
25. R. Asahi, T. Morikawa, H. Irie and T. Ohwaki, Chemical Reviews, 2014, 114, 9824-9852.
26. S. G. Kumar and L. G. Devi, The Journal of Physical Chemistry A, 2011, 115, 13211-13241.
27. G. Li, N. M. Dimitrijevic, L. Chen, T. Rajh and K. A. Gray, The Journal of Physical Chemistry C, 2008, 112, 19040-19044.
28. L. Kong, C. Wang, H. Zheng, X. Zhang and Y. Liu, The Journal of Physical Chemistry C, 2015, 119, 16623-16632.
29. J. Dong, J. Han, Y. Liu, A. Nakajima, S. Matsushita, S. Wei and W. Gao, ACS Applied Materials & Interfaces, 2014, 6, 1385-1388.
30. H. Khan and I. K. Swati, Industrial & Engineering Chemistry Research, 2016, 55, 6619-6633.
31. M. Liu, X. Qiu, M. Miyauchi and K. Hashimoto, Chemistry of Materials, 2011, 23, 5282-5286.
32. K. Suriye, P. Praserthdam and B. Jongsomjit, Applied Surface Science, 2007, 253, 3849-3855.
33. B. Liu, H. M. Chen, C. Liu, S. C. Andrews, C. Hahn and P. Yang, Journal of the American Chemical Society, 2013, 135, 9995-9998.
34. L. G. Devi and R. Kavitha, Applied Catalysis B: Environmental, 2013, 140–141, 559-587.
35. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 2001, 293, 269-271.
36. C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi and E. Giamello, The Journal of Physical Chemistry B, 2005, 109, 11414-11419.
37. J. Z. Bloh, A. Folli and D. E. Macphee, The Journal of Physical Chemistry C, 2014, 118, 21281-21292.
38. T. M. Breault and B. M. Bartlett, The Journal of Physical Chemistry C, 2012, 116, 5986-5994.
39. C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, A. M. Czoska, M. C. Paganini and E. Giamello, Chemistry of Materials, 2008, 20, 3706-3714.
40. N. O. Gopal, H.-H. Lo and S.-C. Ke, Journal of the American Chemical Society, 2008, 130, 2760-2761.
41. C. Marchiori, G. Di Liberto, G. Soliveri, L. Loconte, L. Lo Presti, D. Meroni, M. Ceotto, C. Oliva, S. Cappelli, G. Cappelletti, C. Aieta and S. Ardizzone, The Journal of Physical Chemistry C, 2014, 118, 24152-24164.
42. J. A. Rengifo-Herrera, K. Pierzchała, A. Sienkiewicz, L. Forró, J. Kiwi, J. E. Moser and C. Pulgarin, The Journal of Physical Chemistry C, 2010, 114, 2717-2723.
43. J. Zhao, L. Zhang, W. Xing and K. Lu, The Journal of Physical Chemistry C, 2015, 119, 7732-7737.
44. H.-H. Lo, N. O. Gopal, S.-C. Sheu and S.-C. Ke, The Journal of Physical Chemistry C, 2014, 118, 2877-2884.
45. Q. Xiang, J. Yu and M. Jaroniec, Journal of the American Chemical Society, 2012, 134, 6575-6578.
46. X. Yu, J. Zhang, Z. Zhao, W. Guo, J. Qiu, X. Mou, A. Li, J. P. Claverie and H. Liu, Nano Energy, 2015, 16, 207-217.
47. W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang and H. Zhang, Small, 2013, 9, 140-147.
48. B. Zhu, B. Lin, Y. Zhou, P. Sun, Q. Yao, Y. Chen and B. Gao, Journal of Materials Chemistry A, 2014, 2, 3819-3827.
49. Z. Lu, L. Zeng, W. Song, Z. Qin, D. Zeng and C. Xie, Applied Catalysis B: Environmental, 2017, 202, 489-499.
50. F. Raziq, Y. Qu, X. Zhang, M. Humayun, J. Wu, A. Zada, H. Yu, X. Sun and L. Jing, The Journal of Physical Chemistry C, 2016, 120, 98-107.
51. M. R. Dhananjeyan, E. Mielczarski, K. R. Thampi, P. Buffat, M. Bensimon, A. Kulik, J. Mielczarski and J. Kiwi, The Journal of Physical Chemistry B, 2001, 105, 12046-12055.
52. T. Berger, M. Sterrer, O. Diwald, E. Knözinger, D. Panayotov, T. L. Thompson and J. T. Yates, The Journal of Physical Chemistry B, 2005, 109, 6061-6068.
53. Y. Nakaoka and Y. Nosaka, Journal of Photochemistry and Photobiology A: Chemistry, 1997, 110, 299-305.
54. C. P. Kumar, N. O. Gopal, T. C. Wang, M.-S. Wong and S. C. Ke, The Journal of Physical Chemistry B, 2006, 110, 5223-5229.
55. J. M. Coronado, A. J. Maira, J. C. Conesa, K. L. Yeung, V. Augugliaro and J. Soria, Langmuir, 2001, 17, 5368-5374.
56. P. Meriaudeau, M. Che and C. K. Jørgensen, Chemical Physics Letters, 1970, 5, 131-133.
57. P. V. R. K. Ramacharyulu, D. B. Nimbalkar, J. P. Kumar, G. K. Prasad and S.-C. Ke, RSC Advances, 2015, 5, 37096-37101.
58. A. M. Czoska, S. Livraghi, M. Chiesa, E. Giamello, S. Agnoli, G. Granozzi, E. Finazzi, C. D. Valentin and G. Pacchioni, The Journal of Physical Chemistry C, 2008, 112, 8951-8956.
59. O. I. Micic, Y. Zhang, K. R. Cromack, A. D. Trifunac and M. C. Thurnauer, J. Phys. Chem., 1993, 97, 7277.
60. N. M. Dimitrijevic, B. K. Vijayan, O. G. Poluektov, T. Rajh, K. A. Gray, H. He and P. Zapol, J. Am. Chem. Soc., 2011, 133, 3964.
61. M. Chiesa, M. C. Paganini, S. Livraghi and E. Giamello, Phys. Chem. Chem. Phys., 2013, 15, 9435.
62. D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh and M. C. Thurnauer, The Journal of Physical Chemistry B, 2003, 107, 4545-4549.
63. D. C. Hurum, K. A. Gray, T. Rajh and M. C. Thurnauer, The Journal of Physical Chemistry B, 2005, 109, 977-980.
64. G. Li, N. M. Dimitrijevic, L. Chen, J. M. Nichols, T. Rajh and K. A. Gray, Journal of the American Chemical Society, 2008, 130, 5402-5403.
65. L. H. Wei, S. Y. Wu, Z. H. Zhang, X. F. Wang and Y. X. Hu, Pramana, 2008, 71, 167-173.
66. D. Zwingel, Solid State Communications, 1978, 26, 775-777.
67. S. Livraghi, M. C. Paganini, E. Giamello, A. Selloni, C. Di Valentin and G. Pacchioni, Journal of the American Chemical Society, 2006, 128, 15666-15671.
68. S. Livraghi, A. Votta, M. C. Paganini and E. Giamello, Chemical Communications, 2005, DOI: 10.1039/B413548B, 498-500.
69. A. Folli, J. Z. Bloh, E.-P. Beukes, R. F. Howe and D. E. Macphee, The Journal of Physical Chemistry C, 2013, 117, 22149-22155.
70. X. Chen and S. S. Mao, Chemical Reviews, 2007, 107, 2891-2959.
71. L. L. Hench and J. K. West, Chemical Reviews, 1990, 90, 33-72.
72. A. Vioux, Chemistry of Materials, 1997, 9, 2292-2299.
73. E. Zavoiski, J. Phys. USSR, 1945, 9, 211.
74. N. M. Atherton, Principle of ESR, Presntice Hall, 1993.
75. G. M. Rosen and E. J. Rauckman, Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 7346-7349.
76. S. Stoll and A. Schweiger, Journal of Magnetic Resonance, 2006, 178, 42-55.
77. J. D. Ingle, S.R. Crouch, Spectrochemical Analysis, Prentice-Hall NJ, 1988.
78. P. M. Kubelka, F. Ein Beitrag zur Optik der and Z. Farbanstriche, Tech. Phys. (Leipzig),, 1931, 593-601.
79. J. Tauc, R. Grigorovici and A. Vancu, physica status solidi (b), 1966, 15, 627-637.
80. W. H. Bragg, Phil Mag, 1912, 23, 647.
81. P. Scherrer, Gottinger Nachrichten, 1918.
82. K. Siegbahn, Nova Acta. R. Soc. Scient. Upsal., 1967, 20, 1-282.
83. A. Fujishima, K. Hashimoto and T. Watanbe, BKC Press,Tokyo, 1999, 1-160.
84. M. Anpo, Catal. Surv. Jpn., 1997, 1, 169.
85. T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, Applied Physics Letters, 2002, 81, 454-456.
86. H. Irie, S. Washizuka, N. Yoshino and K. Hashimoto, Chemical Communications, 2003, DOI: 10.1039/B302975A, 1298-1299.
87. C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout and J. L. Gole, Nano Letters, 2003, 3, 1049-1051.
88. T. Lindgren, J. M. Mwabora, E. Avendaño, J. Jonsson, A. Hoel, C.-G. Granqvist and S.-E. Lindquist, The Journal of Physical Chemistry B, 2003, 107, 5709-5716.
89. S. Sakthivel and H. Kisch, ChemPhysChem, 2003, 4, 487.
90. T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto and S. Sugihara, Applied Catalysis B: Environmental, 2003, 42, 403-409.
91. S. Yin, Q. Zhang, F. Saito and T. Sato, Chem. Lett., 2003, 32, 358.
92. T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanaka, T. Sumita and K. Asai, Journal of Applied Physics, 2003, 93, 5156-5160.
93. T. Ohno, T. Mitsui and M. Matsumura, Chem. Lett., 2003, 32, 364.
94. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, Applied Catalysis A: General, 2004, 265, 115-121.
95. W. Ho, J. Yu and S. Lee, J. Solid State Chem., 2006, 179, 1171.
96. M. L. Hitchman, R. A. Spackman, F. J. Yusta and B. Morel, Sci. Global Secur., 1997, 6, 205.
97. G. K. Prasad, P. V. R. K. Ramacharyulu, K. B. B. Singh, A. R. Srivastava, K. Ganesan and R. Vijayaraghavan, J. Mol. Catal. A: Chem., 2011, 349(1-2), 55.
98. P. V. R. K. Ramacharyulu, G. K. Prasad, K. Ganesan and B. Singh, J. Mol. Catal. A: Chem., 2012, 353, 132.
99. P. V. R. K. Ramacharyulu, J. P. Kumar, G. K. Prasad, B. Singh, K. Ganesan and K. Dwivedi, Environ. Prog. Sustainable Energy, 2013, 32, 1118.
100. P. V. R. K. Ramacharyulu, G. K. Prasad, J. P. Kumar, B. Singh, K. Ganesan and K. Dwivedi, J. Mol. Catal. A: Chem., 2014, 387, 38.
101. B. Cojocaru, Ş. Neaţu, V. I. Pârvulescu, V. Şomoghi, N. Petrea, G. Epure, M. Alvaro and H. Garcia, ChemSusChem, 2009, 2, 427-436.
102. G. Yang, Z. Yan and T. Xiao, Applied Surface Science, 2012, 258, 4016-4022.
103. H. Kazuhito, I. Hiroshi and F. Akira, Japanese Journal of Applied Physics, 2005, 44, 8269.
104. K. Maeda and K. Domen, The Journal of Physical Chemistry Letters, 2010, 1, 2655-2661.
105. J. Medina-Valtierra, C. Frausto-Reyes, J. Ramírez-Ortiz and G. Camarillo-Martínez, Industrial & Engineering Chemistry Research, 2009, 48, 598-606.
106. X. Chen and C. Burda, Journal of the American Chemical Society, 2008, 130, 5018-5019.
107. J. Liu, R. Han, Y. Zhao, H. Wang, W. Lu, T. Yu and Y. Zhang, The Journal of Physical Chemistry C, 2011, 115, 7-4515.
108. Q. Xiang, J. Yu and M. Jaroniec, Physical Chemistry Chemical Physics, 2011, 13, 4853-4861.
109. H. Li, X. Zhang, Y. Huo and J. Zhu, Environmental Science & Technology, 2007, 41, 4410-4414.
110. H. Xu, P. Reunchan, S. Ouyang, H. Tong, N. Umezawa, T. Kako and J. Ye, Chemistry of Materials, 2013, 25, 405-411.
111. N. Sharotri and D. Sud, New Journal of Chemistry, 2015, 39, 2217-2223.
112. H. Xie, N. Li, B. Liu, J. Yang and X. Zhao, The Journal of Physical Chemistry C, 2016, DOI: 10.1021/acs.jpcc.6b01730.
113. K. Yang, Y. Dai and B. Huang, The Journal of Physical Chemistry C, 2007, 111, 18985-18994.
114. N. O. Gopal, H.-H. Lo, T.-F. Ke, C.-H. Lee, C.-C. Chou, J.-D. Wu, S.-C. Sheu and S.-C. Ke, The Journal of Physical Chemistry C, 2012, 116, 16191-16197.
115. M. V. Dozzi, S. Livraghi, E. Giamello and E. Selli, Photochemical & Photobiological Sciences, 2011, 10, 343-349.
116. C. Di Valentin, G. Pacchioni and A. Selloni, Physical Review Letters, 2006, 97, 166803.
117. C. Di Valentin, G. Pacchioni and A. Selloni, The Journal of Physical Chemistry C, 2009, 113, 20543-20552.
118. W. Jiao, N. Li, L. Wang, L. Wen, F. Li, G. Liu and H.-M. Cheng, Chemical Communications, 2013, 49, 3461-3463.
119. S. Amreetha, S. Dhanuskodi, A. Nithya and K. Jothivenkatachalam, RSC Advances, 2016, 6, 7854-7863.
120. S.-C. Ke, T.-C. Wang, M.-S. Wong and N. O. Gopal, The Journal of Physical Chemistry B, 2006, 110, 11628-11634.
121. J. W. J. Hamilton, J. A. Byrne, P. S. M. Dunlop, D. D. Dionysiou, M. Pelaez, K. O’Shea, D. Synnott and S. C. Pillai, The Journal of Physical Chemistry C, 2014, 118, 12206-12215.
122. Y. Ji, W. Guo, H. Chen, L. Zhang, S. Chen, M. Hua, Y. Long and Z. Chen, The Journal of Physical Chemistry C, 2015, 119, 27053-27059.
123. H. Chen, C. E. Nanayakkara and V. H. Grassian, Chemical Reviews, 2012, 112, 5919-5948.
124. C. George, M. Ammann, B. D’Anna, D. J. Donaldson and S. A. Nizkorodov, Chemical Reviews, 2015, 115, 4218-4258.
125. M. Miyauchi, H. Irie, M. Liu, X. Qiu, H. Yu, K. Sunada and K. Hashimoto, The Journal of Physical Chemistry Letters, 2016, 7, 75-84.
126. N. Serpone and A. V. Emeline, The Journal of Physical Chemistry Letters, 2012, 3, 673-677.
127. D. Flak, E. Coy, G. Nowaczyk, L. Yate and S. Jurga, RSC Advances, 2015, 5, 85139-85152.
128. M. Thamima and S. Karuppuchamy, Journal of Materials Science: Materials in Electronics, 2016, 27, 458-465.
129. C. Wang, X. Zhang and Y. Liu, Applied Surface Science, 2015, 358, Part A, 28-45.
130. H. Park, H.-i. Kim, G.-h. Moon and W. Choi, Energy & Environmental Science, 2016, 9, 411-433.
131. G. Wang, X. Xiao, W. Li, Z. Lin, Z. Zhao, C. Chen, C. Wang, Y. Li, X. Huang, L. Miao, C. Jiang, Y. Huang and X. Duan, Nano Letters, 2015, 15, 4692-4698.
132. L. Zeng, Z. Lu, M. Li, J. Yang, W. Song, D. Zeng and C. Xie, Applied Catalysis B: Environmental, 2016, 183, 308-316.
133. D. Qi, M. Xing and J. Zhang, The Journal of Physical Chemistry C, 2014, 118, 7329-7336.
134. R. Dhabbe, A. Kadam, P. Korake, M. Kokate, P. Waghmare and K. Garadkar, Journal of Materials Science: Materials in Electronics, 2015, 26, 554-563.
135. M. V. Dozzi, C. D’Andrea, B. Ohtani, G. Valentini and E. Selli, The Journal of Physical Chemistry C, 2013, 117, 25586-25595.
136. M. Zhu, C. Zhai, L. Qiu, C. Lu, A. S. Paton, Y. Du and M. C. Goh, ACS Sustainable Chemistry & Engineering, 2015, 3, 3123-3129.
137. Z. Xing, Z. Li, X. Wu, G. Wang and W. Zhou, International Journal of Hydrogen Energy, 2016, 41, 1535-1541.
138. D. H. Quiñones, A. Rey, P. M. Álvarez, F. J. Beltrán and G. Li Puma, Applied Catalysis B: Environmental, 2015, 178, 74-81.
139. R. P. Cavalcante, R. F. Dantas, B. Bayarri, O. González, J. Giménez, S. Esplugas and A. Machulek Junior, Catalysis Today, 2015, 252, 27-34.
140. R. Zheng, Y. Guo, C. Jin, J. Xie, Y. Zhu and Y. Xie, Journal of Molecular Catalysis A: Chemical, 2010, 319, 46-51.
141. J. Niu, P. Lu, M. Kang, K. Deng, B. Yao, X. Yu and Q. Zhang, Applied Surface Science, 2014, 319, 99-106.
142. K. Pathakoti, S. Morrow, C. Han, M. Pelaez, X. He, D. D. Dionysiou and H.-M. Hwang, Environmental Science & Technology, 2013, 47, 9988-9996.
143. Y. Wu, Y. Dong, X. Xia, X. Liu and H. Li, Applied Surface Science, 2016, 364, 829-836.
144. C. Sun and D. J. Searles, The Journal of Physical Chemistry C, 2013, 117, 26454-26459.
145. M. V. Dozzi, L. Artiglia, G. Granozzi, B. Ohtani and E. Selli, The Journal of Physical Chemistry C, 2014, 118, 25579-25589.
146. X. Wang, W. Wang, X. Wang, J. Zhang, J. Zhao, Z. Gu and L. Zhou, Applied Surface Science, 2015, 349, 264-271.
147. Y. Shao, C. Cao, S. Chen, M. He, J. Fang, J. Chen, X. Li and D. Li, Applied Catalysis B: Environmental, 2015, 179, 344-351.
148. A. E. Giannakas, M. Antonopoulou, C. Daikopoulos, Y. Deligiannakis and I. Konstantinou, Applied Catalysis B: Environmental, 2016, 184, 44-54.
149. S. In, A. Orlov, R. Berg, F. García, S. Pedrosa-Jimenez, M. S. Tikhov, D. S. Wright and R. M. Lambert, Journal of the American Chemical Society, 2007, 129, 13790-13791.
150. L. Lin, W. Lin, J. L. Xie, Y. X. Zhu, B. Y. Zhao and Y. C. Xie, Applied Catalysis B: Environmental, 2007, 75, 52-58.
151. C. Jin, R. Y. Zheng, Y. Guo, J. L. Xie, Y. X. Zhu and Y. C. Xie, Journal of Molecular Catalysis A: Chemical, 2009, 313, 44-48.
152. W.-L. Dai, H.-X. Li, Y. Cao, M.-H. Qiao, K.-N. Fan and J.-F. Deng, Langmuir, 2002, 18, 9605-9608.
153. J. Legrand, S. Gota, M. J. Guittet and C. Petit, Langmuir, 2002, 18, 4131-4137.
154. W. Zhao, W. Ma, C. Chen, J. Zhao and Z. Shuai, Journal of the American Chemical Society, 2004, 126, 4782-4783.
155. R. Zheng, L. Lin, J. Xie, Y. Zhu and Y. Xie, The Journal of Physical Chemistry C, 2008, 112, 15502-15509.
156. Y. Y. Lv, L. S. Yu, H. Y. Huang, H. L. Liu and Y. Y. Feng, J. Alloys Compd., 2009, 488, 314.
157. Q. Shi, D. Yang, Z. Jiang and J. Li, Journal of Molecular Catalysis B: Enzymatic, 2006, 43, 44-48.
158. H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu, Nature, 2008, 453, 638-641.
159. H. Tada, A. Kokubu, M. Iwasaki and S. Ito, Langmuir, 2004, 20, 4665-4670.
160. K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang and J. Ye, ACS Nano, 2014, 8, 7078-7087.
161. A. K. Geim and K. S. Novoselov, Nat Mater, 2007, 6, 183-191.
162. I. V. Lightcap, T. H. Kosel and P. V. Kamat, Nano Letters, 2010, 10, 577-583.
163. S. Pei and H.-M. Cheng, Carbon, 2012, 50, 3210-3228.
164. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, Journal of the American Chemical Society, 2011, 133, 7296-7299.
165. T. R. Thurston and J. P. Wilcoxon, The Journal of Physical Chemistry B, 1999, 103, 11-17.
166. K. Zhang, H.-J. Kim, X. Shi, J.-T. Lee, J.-M. Choi, M.-S. Song and J. H. Park, Inorganic Chemistry, 2013, 52, 9807-9812.
167. Y. Yao, L. Tolentino, Z. Yang, X. Song, W. Zhang, Y. Chen and C.-p. Wong, Advanced Functional Materials, 2013, 23, 3577-3583.
168. J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou and Y. Xie, Advanced Materials, 2013, 25, 5807-5813.
169. J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan and Y. Xie, Journal of the American Chemical Society, 2013, 135, 17881-17888.
170. W. Ho, J. C. Yu, J. Lin, J. Yu and P. Li, Langmuir, 2004, 20, 5865-5869.
171. W. S. Hummers and R. E. Offeman, Journal of the American Chemical Society, 1958, 80, 1339-1339.
172. L. A. King, W. Zhao, M. Chhowalla, D. J. Riley and G. Eda, Journal of Materials Chemistry A, 2013, 1, 8935-8941.
173. C.-J. Liu, S.-Y. Tai, S.-W. Chou, Y.-C. Yu, K.-D. Chang, S. Wang, F. S.-S. Chien, J.-Y. Lin and T.-W. Lin, Journal of Materials Chemistry, 2012, 22, 21057-21064.
174. J. Shen, B. Yan, M. Shi, H. Ma, N. Li and M. Ye, Journal of Materials Chemistry, 2011, 21, 3415-3421.
175. M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li and S. Jin, Journal of the American Chemical Society, 2013, 135, 10274-10277.
176. Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang and Z. Ni, ACS Nano, 2013, 7, 4202-4209.
177. L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan, F. Hu, Y. Jiang, Y. Zhao, T. Hu, Z. Sun and S. Wei, Journal of the American Chemical Society, 2015, 137, 2622-2627.
178. C. V. Pham, M. Krueger, M. Eck, S. Weber and E. Erdem, Applied Physics Letters, 2014, 104, 132102.
179. S. Min and G. Lu, The Journal of Physical Chemistry C, 2012, 116, 25415-25424.
180. W.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong and S.-P. Chai, Chemical Reviews, 2016, 116, 7159-7329.
181. J. Zhu, P. Xiao, H. Li and S. A. C. Carabineiro, ACS Applied Materials & Interfaces, 2014, 6, 16449-16465.
182. G. Dong, Y. Zhang, Q. Pan and J. Qiu, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 20, 33-50.
183. Z. Zhao, Y. Sun and F. Dong, Nanoscale, 2015, 7, 15-37.
184. X. Chen, J. Wei, R. Hou, Y. Liang, Z. Xie, Y. Zhu, X. Zhang and H. Wang, Applied Catalysis B: Environmental, 2016, 188, 342-350.
185. Y.-C. Lin, T.-E. Chien, K.-L. Li and J.-L. Lin, The Journal of Physical Chemistry C, 2015, 119, 8645-8651.
186. X. Song, Y. Hu, M. Zheng and C. Wei, Applied Catalysis B: Environmental, 2016, 182, 587-597.
187. Q. Tay, P. Kanhere, C. F. Ng, S. Chen, S. Chakraborty, A. C. H. Huan, T. C. Sum, R. Ahuja and Z. Chen, Chemistry of Materials, 2015, 27, 4930-4933.
188. S. Martha, A. Nashim and K. M. Parida, Journal of Materials Chemistry A, 2013, 1, 7816-7824.
189. S. Ma, S. Zhan, Y. Jia, Q. Shi and Q. Zhou, Applied Catalysis B: Environmental, 2016, 186, 77-87.
190. T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, Angewandte Chemie International Edition, 2014, 53, 7281-7285.
191. J. Yan, H. Wu, H. Chen, Y. Zhang, F. Zhang and S. F. Liu, Applied Catalysis B: Environmental, 2016, 191, 130-137.
192. N. Ishida, Y. Shimamoto and M. Murakami, Angewandte Chemie International Edition, 2012, 51, 11641-11641.
193. X. Wei, C. Shao, X. Li, N. Lu, K. Wang, Z. Zhang and Y. Liu, Nanoscale, 2016, 8, 11034-11043.
194. R. Hao, G. Wang, H. Tang, L. Sun, C. Xu and D. Han, Applied Catalysis B: Environmental, 2016, 187, 47-58.
195. I. Papailias, N. Todorova, T. Giannakopoulou, J. Yu, D. Dimotikali and C. Trapalis, Catalysis Today, 2017, 280, Part 1, 37-44.
196. W. Yu, D. Xu and T. Peng, Journal of Materials Chemistry A, 2015, 3, 19936-19947.
197. A. M. Bernhard, D. Peitz, M. Elsener, A. Wokaun and O. Kröcher, Applied Catalysis B: Environmental, 2012, 115–116, 129-137.
198. E. Giamello, M. C. Paganini, M. Chiesa, D. M. Murphy, G. Pacchioni, R. Soave and A. Rockenbauer, The Journal of Physical Chemistry B, 2000, 104, 1887-1890.
199. F. Napoli, M. Chiesa, E. Giamello, M. Fittipaldi, C. Di Valentin, F. Gallino and G. Pacchioni, The Journal of Physical Chemistry C, 2010, 114, 5187-5192.
200. W. Zhao, Y. Liu, J. Liu, P. Chen, I. W. Chen, F. Huang and J. Lin, Journal of Materials Chemistry A, 2013, 1, 7942-7948.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊