|
1. Hanahan, D. and Robert A. Weinberg, Hallmarks of Cancer: The Next Generation. Cell, 2011. 144(5): p. 646-674. 2. Ali, J., et al., Genetic etiology of oral cancer. Oral Oncology, 2017. 70: p. 23-28. 3. Gelband, H., et al., Cancer. Disease Control Priorities 2015. 4. Booth, L.A., et al., The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell Signal, 2014. 26(3): p. 549-55. 5. Sena, L.A. and N.S. Chandel, Physiological roles of mitochondrial reactive oxygen species. Mol Cell, 2012. 48(2): p. 158-67. 6. Alexandre, J., et al., Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Res, 2007. 67(8): p. 3512-7. 7. Wang, Y. and S.R. McAlpine, N-terminal and C-terminal modulation of Hsp90 produce dissimilar phenotypes. Chem Commun (Camb), 2015. 51(8): p. 1410-3. 8. Sidera, K. and E. Patsavoudi, HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov, 2014. 9(1): p. 1-20. 9. Su, C.C., et al., An investigation into the cytotoxic effects of 13-acetoxysarcocrassolide from the soft coral Sarcophyton crassocaule on bladder cancer cells. Mar Drugs, 2011. 9(12): p. 2622-42. 10. Su, C.C., et al., 13-acetoxysarcocrassolide induces apoptosis on human gastric carcinoma cells through mitochondria-related apoptotic pathways: p38/JNK activation and PI3K/AKT suppression. Mar Drugs, 2014. 12(10): p. 5295-315. 11. Blunt, J.W., et al., Marine natural products. Nat Prod Rep, 2016. 33(3): p. 382-431. 12. Molinski, T.F., et al., Drug development from marine natural products. Nat Rev Drug Discov, 2009. 8(1): p. 69-85. 13. Nastrucci, C., A. Cesario, and P. Russo, Anticancer drug discovery from the marine environment. Recent Pat Anticancer Drug Discov, 2012. 7(2): p. 218-32. 14. Uchio, Y., et al., Lobohedleolide and (7Z)-lobohedleolide, new cembranolides from the soft coral lobophytum hedleyi whitelegge. Tetrahedron Letters, 1981. 22(41): p. 4089-4092. 15. Duh, C.Y., et al., Cytotoxic cembrenolide diterpenes from the formosan soft coral lobophytum crassum. J Nat Prod, 2000. 63(6): p. 884-5. 16. Rashid, M.A., K.R. Gustafson, and M.R. Boyd, HIV-inhibitory cembrane derivatives from a Philippines collection of the soft coral Lobophytum species. J Nat Prod, 2000. 63(4): p. 531-3. 17. Huang, H.C., et al., Crassolides A-F, cembranoids with a trans-fused lactone from the soft coral Sarcophyton crassocaule. J Nat Prod, 2006. 69(11): p. 1554-9. 18. Chao, C.H., et al., Glycolipids from the formosan soft coral Lobophytum crassum. Chem Pharm Bull (Tokyo), 2007. 55(12): p. 1720-3. 19. Wang, L.T., et al., New cytotoxic cembranolides from the soft coral Lobophytum michaelae. Chem Pharm Bull (Tokyo), 2007. 55(5): p. 766-70. 20. Zhang, W., et al., Structural and stereochemical studies of alpha-methylene-gamma-lactone-bearing cembrane diterpenoids from a south china sea soft coral Lobophytum crassum. J Nat Prod, 2008. 71(6): p. 961-6. 21. Chao, C.H., et al., Cytotoxic and anti-inflammatory cembranoids from the soft coral Lobophytum crassum. J Nat Prod, 2008. 71(11): p. 1819-24. 22. Cheng, S.-Y., et al., Durumolides A–E, anti-inflammatory and antibacterial cembranolides from the soft coral Lobophytum durum. Tetrahedron, 2008. 64(41): p. 9698-9704. 23. Lin, S.T., et al., Lobocrasol, a new diterpenoid from the soft coral Lobophytum crassum. Org Lett, 2009. 11(14): p. 3012-4. 24. Cheng, S.Y., et al., Anti-inflammatory cembranolides from the soft coral Lobophytum durum. Bioorg Med Chem, 2009. 17(11): p. 3763-9. 25. Cheng, S.Y., et al., Unprecedented hemiketal cembranolides with anti-inflammatory activity from the soft coral Lobophytum durum. J Nat Prod, 2009. 72(1): p. 152-5. 26. Fattorusso, E., et al., Oxygenated cembranoids of the decaryiol type from the Indonesian soft coral Lobophytum sp. Tetrahedron, 2009. 65(15): p. 2898-2904. 27. Yan, P., et al., Lobophytones A-G, new isobiscembranoids from the soft coral Lobophytum pauciflorum. Org Lett, 2010. 12(11): p. 2484-7. 28. Yan, P., et al., Lobophytones O-T, new biscembranoids and cembranoid from soft coral Lobophytum pauciflorum. Mar Drugs, 2010. 8(11): p. 2837-48. 29. Lu, Y., et al., Steroid and cembranoids from the Dongsha atoll soft coral Lobophytum sarcophytoides. Tetrahedron, 2010. 66(35): p. 7129-7135. 30. Nguyen, H.T., et al., Chemical components from the Vietnamese soft coral Lobophytum sp. Arch Pharm Res, 2010. 33(4): p. 503-8. 31. Chau, V.M., et al., Cytotoxic and antioxidant activities of diterpenes and sterols from the Vietnamese soft coral Lobophytum compactum. Bioorg Med Chem Lett, 2011. 21(7): p. 2155-9. 32. Cheng, S.-Y., et al., α-Tocopherols from the Formosan Soft Coral Lobophytum crassum. Bulletin of the Chemical Society of Japan, 2011. 84(7): p. 783-787. 33. Bioactive Cembranoids from the Dongsha Atoll Soft Coral Lobophytum crassum. Bulletin of the Chemical Society of Japan, 2011. 84(10): p. 1102-1106. 34. Cheng, S.Y., et al., New cembranolides from the Dongsha Atoll soft coral Lobophytum durum. Mar Drugs, 2011. 9(8): p. 1307-18. 35. Kao, C.Y., et al., Lobocrassins A-E: new cembrane-type diterpenoids from the soft coral Lobophytum crassum. Mar Drugs, 2011. 9(8): p. 1319-31. 36. Lee, N.L. and J.H. Su, Tetrahydrofuran cembranoids from the cultured soft coral Lobophytum crassum. Mar Drugs, 2011. 9(12): p. 2526-36. 37. Lin, S.T., S.K. Wang, and C.Y. Duh, Cembranoids from the Dongsha Atoll Soft Coral Lobophytum crassum. Mar Drugs, 2011. 9(12): p. 2705-16. 38. Li, L., et al., Diterpenes from the Hainan soft coral Lobophytum cristatum Tixier-Durivault. J Nat Prod, 2011. 74(10): p. 2089-94. 39. Yan, P., et al., Lobophytones U - Z(1), biscembranoids from the Chinese soft coral Lobophytum pauciflorum. Chem Biodivers, 2011. 8(9): p. 1724-34. 40. Quang, T.H., et al., Cytotoxic and PPARs transcriptional activities of sterols from the Vietnamese soft coral Lobophytum laevigatum. Bioorganic & Medicinal Chemistry Letters, 2011. 21(10): p. 2845-2849. 41. Lee, C.H., et al., Terpenoids from the Octocorals Menella sp. (Plexauridae) and Lobophytum crassum (Alcyonacea). Mar Drugs, 2012. 10(2): p. 427-38. 42. Wang, S.K. and C.Y. Duh, New Cytotoxic Cembranolides from the Soft Coral Lobophytum michaelae. Mar Drugs, 2012. 10(2): p. 306-18. 43. Govindam, S.V., et al., Cyclolobatriene, a novel prenylated germacrene diterpene, from the soft coral Lobophytum pauciflorum. Bioorg Med Chem, 2012. 20(2): p. 687-92. 44. Zhao, M., et al., Four New 7,8-epoxycembranoids from a Chinese soft coral Lobophytum sp. Chem Pharm Bull (Tokyo), 2013. 61(12): p. 1323-8. 45. Zhao, M., et al., Cytotoxic and Antibacterial Cembranoids from a South China Sea Soft Coral, Lobophytum sp. Mar Drugs, 2013. 11(4): p. 1162-72. 46. Thao, N.P., et al., New anti-inflammatory cembranoid diterpenoids from the Vietnamese soft coral Lobophytum crassum. Bioorg Med Chem Lett, 2014. 24(1): p. 228-32. 47. Cuong, N.X., et al., Cembranoid diterpenes from the soft coral Lobophytum crassum and their anti-inflammatory activities. Chem Pharm Bull (Tokyo), 2014. 62(2): p. 203-8. 48. Cheng, S.Y., S.K. Wang, and C.Y. Duh, Secocrassumol, a seco-cembranoid from the Dongsha Atoll soft coral Lobophytum crassum. Mar Drugs, 2014. 12(12): p. 6028-37. 49. Zhao, M., et al., Cembranoids from a Chinese Collection of the Soft Coral Lobophytum crassum. Mar Drugs, 2016. 14(6). 50. Duh, C.Y., et al., Cytotoxic cembrenolides and steroids from the formosan soft coral Sarcophyton crassocaule. J Nat Prod, 2000. 63(12): p. 1634-7. 51. Scully, C. and J. Kirby, Statement on mouth cancer diagnosis and prevention. Br Dent J, 2014. 216(1): p. 37-8. 52. Fribley, A.M., et al., Recent Trends in Oral Cavity Cancer Research Support in the United States. J Dent Res, 2017. 96(1): p. 17-22. 53. Maier, H., et al., Dental status and oral hygiene in patients with head and neck cancer. Otolaryngol Head Neck Surg, 1993. 108(6): p. 655-61. 54. Chen, C.Y., et al., Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage. Toxins (Basel), 2016. 8(11). 55. Kam, D., et al., Incidence of Suicide in Patients With Head and Neck Cancer. JAMA Otolaryngol Head Neck Surg, 2015. 141(12): p. 1075-81. 56. Hassan, M., et al., Apoptosis and Molecular Targeting Therapy in Cancer. Biomed Res Int, 2014. 2014. 57. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516. 58. Kerr, J.F., C.M. Winterford, and B.V. Harmon, Apoptosis. Its significance in cancer and cancer therapy. Cancer, 1994. 73(8): p. 2013-26. 59. Lowe, S.W. and A.W. Lin, Apoptosis in cancer. Carcinogenesis, 2000. 21(3): p. 485-95. 60. Ouyang, L., et al., Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Proliferation, 2012. 45(6): p. 487-498. 61. Yeh, W.C., et al., FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science, 1998. 279(5358): p. 1954-8. 62. Taylor, R.C., S.P. Cullen, and S.J. Martin, Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol, 2008. 9(3): p. 231-241. 63. Su, Z., et al., Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer, 2015. 14. 64. Ashkenazi, A., Targeting the extrinsic apoptotic pathway in cancer: lessons learned and future directions. J Clin Invest, 2015. 125(2): p. 487-9. 65. Loreto, C. and G. La Rocca, The role of intrinsic pathway in apoptosis activation and progression in Peyronie's disease. 2014. 2014: p. 616149. 66. Wu, J., et al., Heat Shock Proteins and Cancer. Trends Pharmacol Sci, 2016. 67. Jego, G., et al., Targeting heat shock proteins in cancer. Cancer Lett, 2013. 332(2): p. 275-85. 68. Ali, M.M., et al., Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature, 2006. 440(7087): p. 1013-7. 69. Zhao, Z., et al., X66, a novel N-terminal heat shock protein 90 inhibitor, exerts antitumor effects without induction of heat shock response. Oncotarget, 2016. 7(20): p. 29648-63. 70. Jhaveri, K., et al., Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opin Investig Drugs, 2014. 23(5): p. 611-28. 71. Wang, M., et al., Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90-Kinase Interactions. J Med Chem, 2016. 59(12): p. 5563-86. 72. Djuzenova, C.S., et al., Dual PI3K- and mTOR-inhibitor PI-103 can either enhance or reduce the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922 in tumor cells: The role of drug-irradiation schedule. Oncotarget, 2016. 7(25): p. 38191-38209. 73. Niikura, Y., et al., 17-AAG, an Hsp90 inhibitor, causes kinetochore defects: a novel mechanism by which 17-AAG inhibits cell proliferation. Oncogene, 2006. 25(30): p. 4133-46. 74. Basso, A.D., et al., Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene, 2002. 21(8): p. 1159-66. 75. Shrestha, L., et al., Heat Shock Protein (HSP) Drug Discovery and Development: Targeting Heat Shock Proteins in Disease. Curr Top Med Chem, 2016. 16(25): p. 2753-64. 76. Verma, S., et al., Hsp90: Friends, clients and natural foes. Biochimie, 2016. 127: p. 227-40. 77. Toffoli, S. and C. Michiels, Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. Febs j, 2008. 275(12): p. 2991-3002. 78. Cui, X.G., et al., HIF1/2alpha mediates hypoxia-induced LDHA expression in human pancreatic cancer cells. Oncotarget, 2017. 79. Chen, R., et al., Regulation of transcription of hypoxia-inducible factor-1alpha (HIF-1alpha) by heat shock factors HSF2 and HSF4. Oncogene, 2011. 30(22): p. 2570-80. 80. Minet, E., et al., Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett, 1999. 460(2): p. 251-6. 81. Li, L., et al., ROS and Autophagy: Interactions and Molecular Regulatory Mechanisms. Cell Mol Neurobiol, 2015. 35(5): p. 615-21. 82. Rahal, A., et al., Oxidative stress, prooxidants, and antioxidants: the interplay. 2014. 2014: p. 761264. 83. Scherz-Shouval, R. and Z. Elazar, Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci, 2011. 36(1): p. 30-8. 84. Liou, G.Y. and P. Storz, Reactive oxygen species in cancer. Free Radic Res, 2010. 44(5). 85. Curtin, J.F., M. Donovan, and T.G. Cotter, Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods, 2002. 265(1-2): p. 49-72. 86. Marullo, R., et al., Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions. PLoS One, 2013. 8(11). 87. Santoro, V., et al., Role of Reactive Oxygen Species in the Abrogation of Oxaliplatin Activity by Cetuximab in Colorectal Cancer. JNCI: Journal of the National Cancer Institute, 2016. 108(6): p. djv394-djv394. 88. Papież, M.A., et al., Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species. Drug Des Devel Ther, 2016. 10: p. 557-70. 89. Ma, Q., Role of Nrf2 in Oxidative Stress and Toxicity. Annu Rev Pharmacol Toxicol, 2013. 53: p. 401-26. 90. Furfaro, A.L., et al., The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance. Oxid Med Cell Longev, 2016. 2016: p. 1958174. 91. Ashino, T., M. Yamamoto, and S. Numazawa, Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury. Sci Rep, 2016. 6. 92. Jaramillo, M.C. and D.D. Zhang, The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev, 2013. 27(20): p. 2179-91. 93. Loboda, A., et al., Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci, 2016. 73: p. 3221-47. 94. Shen, H., et al., Blockage of Nrf2 suppresses the migration and invasion of esophageal squamous cell carcinoma cells in hypoxic microenvironment. Dis Esophagus, 2014. 27(7): p. 685-92. 95. Moscat, J. and M.T. Diaz-Meco, p62 at the crossroads of autophagy, apoptosis, and cancer. Cell, 2009. 137(6): p. 1001-4. 96. Zeng, R.X., et al., p62/SQSTM1 is involved in caspase-8 associated cell death induced by proteasome inhibitor MG132 in U87MG cells. Cell Biol Int, 2014. 38(10): p. 1221-6. 97. Katsuragi, Y., Y. Ichimura, and M. Komatsu, p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. Febs j, 2015. 282(24): p. 4672-8. 98. Song, C., et al., Oxidative stress-mediated NFκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy. PLOS ONE, 2017. 12(2): p. e0171940. 99. Katsuragi, Y., Y. Ichimura, and M. Komatsu, Regulation of the Keap1–Nrf2 pathway by p62/SQSTM1. Current Opinion in Toxicology, 2016. 1: p. 54-61. 100. Liu, H., et al., Reactive oxygen species-mediated endoplasmic reticulum stress and mitochondrial dysfunction contribute to polydatin-induced apoptosis in human nasopharyngeal carcinoma CNE cells. J Cell Biochem, 2011. 112(12): p. 3695-703. 101. Green, P.S. and C. Leeuwenburgh, Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2002. 1588(1): p. 94-101. 102. Ishimura, R., K. Tanaka, and M. Komatsu, Dissection of the role of p62/Sqstm1 in activation of Nrf2 during xenophagy. FEBS Lett, 2014. 588(5): p. 822-8. 103. Trepel, J., et al., Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer, 2010. 10(8): p. 537-549. 104. Ichimura, Y., et al., Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell, 2013. 51(5): p. 618-31.
|