跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 23:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周依橙
研究生(外文):Yi-Cheng Chou
論文名稱:13-Acetoxysarcocrassolide透過氧化逆境誘導口腔癌細胞凋亡
論文名稱(外文):13-Acetoxysarcocrassolide, a Cytotoxic Cembranolide Derivative, Induced Apoptotic Activity on Oral Cancer Cells through the Oxidative Stress
指導教授:呂美津
指導教授(外文):Mei-Chin Lu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:77
中文關鍵詞:細胞凋亡抗癌13-AcetoxysarcocrassolideHSP90抑制劑氧化逆境Keap1-Nrf2路徑p62/SQSTM1
外文關鍵詞:ApoptosisAnticancer13-AcetoxysarcocrassolideHSP90 inhibitorOxidative stressKeap1-Nrf2 pathwayp62/SQSTM1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Heat shock protein 90 (HSP90) 在細胞生長、分化甚至癌症形成過程中,扮演重要的角色,由於它調控許多致癌蛋白以及其下游蛋白(client proteins),當抑制HSP90之蛋白表現表達即能抑制致癌途徑,因此在癌症治療中HSP90成為有潛力之標的。由隔板葉型軟珊瑚Lobophytum crassum所分離出海洋天然物13-acetoxysarcocrassolide (13-AC),發現對各種癌細胞具有顯著毒殺效果,並且能抑制HSP90之活性。經由實驗證實,13-AC會透過干擾粒線體膜電位(MMP)之降解以及刺激reactive oxygen species (ROS)產生進而誘導口腔癌細胞Ca9-22凋亡。然而,抗氧化劑N-acetylcysteine (NAC)前處理後會抑制ROS的產生並且避免13-AC造成細胞毒性。雖然13-AC處理後會快速地活化Keap1-Nrf2之表現,但是利用免疫沉澱、免疫細胞螢光及西方轉漬分析發現13-AC處理明顯地抑制Nrf2抗氧化之功能,並增加p62/SQSTM1之表現。以siRNA方式降解p62表現明顯地減少13-AC處理所造成之生長抑制。利用動物異植試驗結果,相較於對照組織組,發現以13-AC治療60天具有抗腫瘤的效果,顯著地抑制腫瘤的體積及重量分別為55.29%與90.33%。經由分子模擬分析,13-AC結合在HSP90分子結構的N端,然而,17-allylaminogeldanamycin (17-AAG)是現今已知HSP90 N端抑制劑,發現13-AC結合親和力較17-AAG強。觀察Ca9-22細胞處理13-AC後,會活化細胞凋亡相關蛋白的表現量,例如caspases-3、caspases-9以及PARP。另外,13-AC會抑制HSP90的下游蛋白(client proteins),包括p-Akt、CDK4、HIF-1以及MMP-2。總結以上結果,13-AC是一個新穎的HSP90抑制劑,並且藉由促進ROS的產生以及抑制抗氧化蛋白(Nrf2)蛋白活性,進而引發細胞凋亡。因此,13-AC有機會成為HSP90抑制劑,可望未來治療癌症中展現相當之潛力發展為抗癌藥物。
Heat shock protein 90 (HSP90) plays a significant role in cellular proliferation, differentiation, and carcinogenesis. HSP90 has been recognized as a promising therapeutic target in the war on cancer because it affects various oncoproteins, and the inhibition of HSP90 leads to the suppression of multiple oncogenic pathways as well as client proteins. In this study, we found that the marine cytotoxic product 13-acetoxysarcocrassolide (13-AC), recently isolated from the alcyonacean coral Lobophytum crassum, exhibited potent inhibitory activity on HSP90. 13-AC induced apoptosis in oral cancer cells Ca9-22 through the disruption of mitochondrial membrane potential (MMP) and the stimulation of reactive oxygen species (ROS) generation. However, the pretreatment of Ca9-22 cells with N-acetylcysteine (NAC), an antioxidant, inhibited ROS production resulting in the attenuation of the cytotoxic activity of 13-AC. Under stressful conditions, Ca9-22 cells treated with 13-AC showed a rapid induction of Keap1-Nrf2 pathway and an increase in the expression of p62/SQSTM1, but a suppression in antioxidative function of Nrf2 with immunoprecipitation, immunocytofluorecent and western blotting analysis. Inhibition of p62 expression by siRNA considerably attenuated the growth-inhibited by 13-AC treatment. Moreover, 13-AC exerted antitumor effect against oral cancer cells as demonstrated by the in vivo xenograft animal model. It significantly reduced tumor volume (55.29%) and tumor weight (90.33%). The molecular docking analysis demonstrated that 13-AC binds to N-terminal domain of HSP90 protein showing binding affinity more than 17-allylaminogeldanamycin (17-AAG), a HSP90 inhibitor of N-terminal ATP binding site and suppressed HSP90 client proteins including p-Akt, CDK4, HIF-1, and MMP-2. On the proteins level, 13-AC increased the expression of apoptosis related proteins such as cleaved caspases-3 and -9 as well as cleaved PARP in a dose- and time-dependent manner. Moreover, the results suggested that 13-AC exerted its cytotoxic activity through the promotion of ROS generation and the suppression of antioxidant enzyme activities. Altogether, the apoptotic effect of 13-AC was found to be mediated through the inhibition of HSP90 suggesting its potential future application as an anticancer agent.
Abstract .................................................................................... VI
中文摘要 .....................................................................................VII
第一章、 緒論 ............................................................................... 1
第二章、 文獻回顧 ........................................................................... 3
2-1 海洋天然物............................................................................... 3
2-2 海洋珊瑚 ................................................................................ 3
2-3 Lobophytum 屬所含生物活性之天然物.................................................... 4
2-4 13-Acetoxysarcocrassolide之生物活性................................................... 30
2-5 口腔癌 ......................................................................................................... 30
2-6 細胞凋亡 ..................................................................................................... 30
2-7 熱休克蛋白................................................................................................. 31
2-8 活性氧化物(Reactive Oxygen species, ROS)......................................... 33
2-9 Keap1/Nrf2 pathway ................................................................................. 33
第三章、 研究材料與方法.................................................................................... 35
3-1 實驗材料 ..................................................................................................... 35
3-1-1 13-acetoxysarcocrassolide純化及配製.................................................... 35
3-1-2 細胞株 (Cell lines)..................................................................................... 36
3-1-3 藥品試劑 ..................................................................................................... 36
3-2 實驗方法 ..................................................................................................... 37
3-2-1 細胞培養 (Cell culture)............................................................................. 37
3-2-2 細胞冷凍保存............................................................................................. 37
3-2-3 細胞存活率試驗(MTT assay) ................................................................. 37
3-2-4 DAPI (4',6-diamidino-2-phenylindole)染色............................................ 38
3-2-5 Annexin V/PI 雙重染色檢測細胞凋亡之程度........................................ 38
3-2-6 檢測細胞內粒線體膜電位之變化............................................................. 38
3-2-7 檢測細胞內ROS之變化........................................................................... 38
3-2-8 檢測細胞內鈣離子濃度之變化................................................................. 39
3-2-9 蛋白質之定性及定量分析......................................................................... 39
3-2-10 單細胞凝膠電泳試驗(Single cell gel electrophoresis assay)................. 40
3-2-11 人類口腔癌細胞異植動物之抗癌試驗(Human oral cancer cells xenograft animal model) ........................................................................... 40 3-2-12 分子對位分析(Molecular docking analysis).......................................... 40 3-2-13 免疫沉澱法(Immunoprecipitation, IP) .................................................. 41
3-2-14 免疫螢光染色分析(Immunofluorescence analysis) .............................. 41
3-2-15 Inhibition of p62 expression by small RNA interference (siRNA) ........ 41
第四章、結果 ........................................................................................................ 43
4-1 化合物13-AC針對人類癌細胞生長之影響.............................................. 43
4-2 13-AC抑制口腔癌Ca9-22細胞遷徙能力與誘發DNA受損之影響....... 45
4-3 13-AC誘導口腔癌Ca9-22細胞發生細胞凋亡......................................... 48
4-4 13-AC使口腔癌Ca9-22細胞粒線體功能受損......................................... 51
4-5 13-AC誘導口腔癌Ca9-22細胞活性氧化物生成進而影響細胞粒線體功能受損與細胞凋..... 52
4-6 13-AC誘發抗氧化路徑Keap1/Nrf2/p62/SQSTM1之影響..................... 55
4-7 利用動物異植試驗檢測13-AC對Ca9-22腫瘤生長之影響.................... 59
4-8 13-AC影響HSPs表現............................................................ 63
第五章、 結論與討論................................................................ 67
參考文獻 .......................................................................... 70
1. Hanahan, D. and Robert A. Weinberg, Hallmarks of Cancer: The Next Generation. Cell, 2011. 144(5): p. 646-674.
2. Ali, J., et al., Genetic etiology of oral cancer. Oral Oncology, 2017. 70: p. 23-28.
3. Gelband, H., et al., Cancer. Disease Control Priorities 2015.
4. Booth, L.A., et al., The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell Signal, 2014. 26(3): p. 549-55.
5. Sena, L.A. and N.S. Chandel, Physiological roles of mitochondrial reactive oxygen species. Mol Cell, 2012. 48(2): p. 158-67.
6. Alexandre, J., et al., Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Res, 2007. 67(8): p. 3512-7.
7. Wang, Y. and S.R. McAlpine, N-terminal and C-terminal modulation of Hsp90 produce dissimilar phenotypes. Chem Commun (Camb), 2015. 51(8): p. 1410-3.
8. Sidera, K. and E. Patsavoudi, HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov, 2014. 9(1): p. 1-20.
9. Su, C.C., et al., An investigation into the cytotoxic effects of 13-acetoxysarcocrassolide from the soft coral Sarcophyton crassocaule on bladder cancer cells. Mar Drugs, 2011. 9(12): p. 2622-42.
10. Su, C.C., et al., 13-acetoxysarcocrassolide induces apoptosis on human gastric carcinoma cells through mitochondria-related apoptotic pathways: p38/JNK activation and PI3K/AKT suppression. Mar Drugs, 2014. 12(10): p. 5295-315.
11. Blunt, J.W., et al., Marine natural products. Nat Prod Rep, 2016. 33(3): p. 382-431.
12. Molinski, T.F., et al., Drug development from marine natural products. Nat Rev Drug Discov, 2009. 8(1): p. 69-85.
13. Nastrucci, C., A. Cesario, and P. Russo, Anticancer drug discovery from the marine environment. Recent Pat Anticancer Drug Discov, 2012. 7(2): p. 218-32.
14. Uchio, Y., et al., Lobohedleolide and (7Z)-lobohedleolide, new cembranolides from the soft coral lobophytum hedleyi whitelegge. Tetrahedron Letters, 1981. 22(41): p. 4089-4092.
15. Duh, C.Y., et al., Cytotoxic cembrenolide diterpenes from the formosan soft coral lobophytum crassum. J Nat Prod, 2000. 63(6): p. 884-5.
16. Rashid, M.A., K.R. Gustafson, and M.R. Boyd, HIV-inhibitory cembrane derivatives from a Philippines collection of the soft coral Lobophytum species. J Nat Prod, 2000. 63(4): p. 531-3.
17. Huang, H.C., et al., Crassolides A-F, cembranoids with a trans-fused lactone from the soft coral Sarcophyton crassocaule. J Nat Prod, 2006. 69(11): p. 1554-9.
18. Chao, C.H., et al., Glycolipids from the formosan soft coral Lobophytum crassum. Chem Pharm Bull (Tokyo), 2007. 55(12): p. 1720-3.
19. Wang, L.T., et al., New cytotoxic cembranolides from the soft coral Lobophytum michaelae. Chem Pharm Bull (Tokyo), 2007. 55(5): p. 766-70.
20. Zhang, W., et al., Structural and stereochemical studies of alpha-methylene-gamma-lactone-bearing cembrane diterpenoids from a south china sea soft coral Lobophytum crassum. J Nat Prod, 2008. 71(6): p. 961-6.
21. Chao, C.H., et al., Cytotoxic and anti-inflammatory cembranoids from the soft coral Lobophytum crassum. J Nat Prod, 2008. 71(11): p. 1819-24.
22. Cheng, S.-Y., et al., Durumolides A–E, anti-inflammatory and antibacterial cembranolides from the soft coral Lobophytum durum. Tetrahedron, 2008. 64(41): p. 9698-9704.
23. Lin, S.T., et al., Lobocrasol, a new diterpenoid from the soft coral Lobophytum crassum. Org Lett, 2009. 11(14): p. 3012-4.
24. Cheng, S.Y., et al., Anti-inflammatory cembranolides from the soft coral Lobophytum durum. Bioorg Med Chem, 2009. 17(11): p. 3763-9.
25. Cheng, S.Y., et al., Unprecedented hemiketal cembranolides with anti-inflammatory activity from the soft coral Lobophytum durum. J Nat Prod, 2009. 72(1): p. 152-5.
26. Fattorusso, E., et al., Oxygenated cembranoids of the decaryiol type from the Indonesian soft coral Lobophytum sp. Tetrahedron, 2009. 65(15): p. 2898-2904.
27. Yan, P., et al., Lobophytones A-G, new isobiscembranoids from the soft coral Lobophytum pauciflorum. Org Lett, 2010. 12(11): p. 2484-7.
28. Yan, P., et al., Lobophytones O-T, new biscembranoids and cembranoid from soft coral Lobophytum pauciflorum. Mar Drugs, 2010. 8(11): p. 2837-48.
29. Lu, Y., et al., Steroid and cembranoids from the Dongsha atoll soft coral Lobophytum sarcophytoides. Tetrahedron, 2010. 66(35): p. 7129-7135.
30. Nguyen, H.T., et al., Chemical components from the Vietnamese soft coral Lobophytum sp. Arch Pharm Res, 2010. 33(4): p. 503-8.
31. Chau, V.M., et al., Cytotoxic and antioxidant activities of diterpenes and sterols from the Vietnamese soft coral Lobophytum compactum. Bioorg Med Chem Lett, 2011. 21(7): p. 2155-9.
32. Cheng, S.-Y., et al., α-Tocopherols from the Formosan Soft Coral Lobophytum crassum. Bulletin of the Chemical Society of Japan, 2011. 84(7): p. 783-787.
33. Bioactive Cembranoids from the Dongsha Atoll Soft Coral Lobophytum crassum. Bulletin of the Chemical Society of Japan, 2011. 84(10): p. 1102-1106.
34. Cheng, S.Y., et al., New cembranolides from the Dongsha Atoll soft coral Lobophytum durum. Mar Drugs, 2011. 9(8): p. 1307-18.
35. Kao, C.Y., et al., Lobocrassins A-E: new cembrane-type diterpenoids from the soft coral Lobophytum crassum. Mar Drugs, 2011. 9(8): p. 1319-31.
36. Lee, N.L. and J.H. Su, Tetrahydrofuran cembranoids from the cultured soft coral Lobophytum crassum. Mar Drugs, 2011. 9(12): p. 2526-36.
37. Lin, S.T., S.K. Wang, and C.Y. Duh, Cembranoids from the Dongsha Atoll Soft Coral Lobophytum crassum. Mar Drugs, 2011. 9(12): p. 2705-16.
38. Li, L., et al., Diterpenes from the Hainan soft coral Lobophytum cristatum Tixier-Durivault. J Nat Prod, 2011. 74(10): p. 2089-94.
39. Yan, P., et al., Lobophytones U - Z(1), biscembranoids from the Chinese soft coral Lobophytum pauciflorum. Chem Biodivers, 2011. 8(9): p. 1724-34.
40. Quang, T.H., et al., Cytotoxic and PPARs transcriptional activities of sterols from the Vietnamese soft coral Lobophytum laevigatum. Bioorganic & Medicinal Chemistry Letters, 2011. 21(10): p. 2845-2849.
41. Lee, C.H., et al., Terpenoids from the Octocorals Menella sp. (Plexauridae) and Lobophytum crassum (Alcyonacea). Mar Drugs, 2012. 10(2): p. 427-38.
42. Wang, S.K. and C.Y. Duh, New Cytotoxic Cembranolides from the Soft Coral Lobophytum michaelae. Mar Drugs, 2012. 10(2): p. 306-18.
43. Govindam, S.V., et al., Cyclolobatriene, a novel prenylated germacrene diterpene, from the soft coral Lobophytum pauciflorum. Bioorg Med Chem, 2012. 20(2): p. 687-92.
44. Zhao, M., et al., Four New 7,8-epoxycembranoids from a Chinese soft coral Lobophytum sp. Chem Pharm Bull (Tokyo), 2013. 61(12): p. 1323-8.
45. Zhao, M., et al., Cytotoxic and Antibacterial Cembranoids from a South China Sea Soft Coral, Lobophytum sp. Mar Drugs, 2013. 11(4): p. 1162-72.
46. Thao, N.P., et al., New anti-inflammatory cembranoid diterpenoids from the Vietnamese soft coral Lobophytum crassum. Bioorg Med Chem Lett, 2014. 24(1): p. 228-32.
47. Cuong, N.X., et al., Cembranoid diterpenes from the soft coral Lobophytum crassum and their anti-inflammatory activities. Chem Pharm Bull (Tokyo), 2014. 62(2): p. 203-8.
48. Cheng, S.Y., S.K. Wang, and C.Y. Duh, Secocrassumol, a seco-cembranoid from the Dongsha Atoll soft coral Lobophytum crassum. Mar Drugs, 2014. 12(12): p. 6028-37.
49. Zhao, M., et al., Cembranoids from a Chinese Collection of the Soft Coral Lobophytum crassum. Mar Drugs, 2016. 14(6).
50. Duh, C.Y., et al., Cytotoxic cembrenolides and steroids from the formosan soft coral Sarcophyton crassocaule. J Nat Prod, 2000. 63(12): p. 1634-7.
51. Scully, C. and J. Kirby, Statement on mouth cancer diagnosis and prevention. Br Dent J, 2014. 216(1): p. 37-8.
52. Fribley, A.M., et al., Recent Trends in Oral Cavity Cancer Research Support in the United States. J Dent Res, 2017. 96(1): p. 17-22.
53. Maier, H., et al., Dental status and oral hygiene in patients with head and neck cancer. Otolaryngol Head Neck Surg, 1993. 108(6): p. 655-61.
54. Chen, C.Y., et al., Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage. Toxins (Basel), 2016. 8(11).
55. Kam, D., et al., Incidence of Suicide in Patients With Head and Neck Cancer. JAMA Otolaryngol Head Neck Surg, 2015. 141(12): p. 1075-81.
56. Hassan, M., et al., Apoptosis and Molecular Targeting Therapy in Cancer. Biomed Res Int, 2014. 2014.
57. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516.
58. Kerr, J.F., C.M. Winterford, and B.V. Harmon, Apoptosis. Its significance in cancer and cancer therapy. Cancer, 1994. 73(8): p. 2013-26.
59. Lowe, S.W. and A.W. Lin, Apoptosis in cancer. Carcinogenesis, 2000. 21(3): p. 485-95.
60. Ouyang, L., et al., Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Proliferation, 2012. 45(6): p. 487-498.
61. Yeh, W.C., et al., FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science, 1998. 279(5358): p. 1954-8.
62. Taylor, R.C., S.P. Cullen, and S.J. Martin, Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol, 2008. 9(3): p. 231-241.
63. Su, Z., et al., Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer, 2015. 14.
64. Ashkenazi, A., Targeting the extrinsic apoptotic pathway in cancer: lessons learned and future directions. J Clin Invest, 2015. 125(2): p. 487-9.
65. Loreto, C. and G. La Rocca, The role of intrinsic pathway in apoptosis activation and progression in Peyronie's disease. 2014. 2014: p. 616149.
66. Wu, J., et al., Heat Shock Proteins and Cancer. Trends Pharmacol Sci, 2016.
67. Jego, G., et al., Targeting heat shock proteins in cancer. Cancer Lett, 2013. 332(2): p. 275-85.
68. Ali, M.M., et al., Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature, 2006. 440(7087): p. 1013-7.
69. Zhao, Z., et al., X66, a novel N-terminal heat shock protein 90 inhibitor, exerts antitumor effects without induction of heat shock response. Oncotarget, 2016. 7(20): p. 29648-63.
70. Jhaveri, K., et al., Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opin Investig Drugs, 2014. 23(5): p. 611-28.
71. Wang, M., et al., Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90-Kinase Interactions. J Med Chem, 2016. 59(12): p. 5563-86.
72. Djuzenova, C.S., et al., Dual PI3K- and mTOR-inhibitor PI-103 can either enhance or reduce the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922 in tumor cells: The role of drug-irradiation schedule. Oncotarget, 2016. 7(25): p. 38191-38209.
73. Niikura, Y., et al., 17-AAG, an Hsp90 inhibitor, causes kinetochore defects: a novel mechanism by which 17-AAG inhibits cell proliferation. Oncogene, 2006. 25(30): p. 4133-46.
74. Basso, A.D., et al., Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene, 2002. 21(8): p. 1159-66.
75. Shrestha, L., et al., Heat Shock Protein (HSP) Drug Discovery and Development: Targeting Heat Shock Proteins in Disease. Curr Top Med Chem, 2016. 16(25): p. 2753-64.
76. Verma, S., et al., Hsp90: Friends, clients and natural foes. Biochimie, 2016. 127: p. 227-40.
77. Toffoli, S. and C. Michiels, Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. Febs j, 2008. 275(12): p. 2991-3002.
78. Cui, X.G., et al., HIF1/2alpha mediates hypoxia-induced LDHA expression in human pancreatic cancer cells. Oncotarget, 2017.
79. Chen, R., et al., Regulation of transcription of hypoxia-inducible factor-1alpha (HIF-1alpha) by heat shock factors HSF2 and HSF4. Oncogene, 2011. 30(22): p. 2570-80.
80. Minet, E., et al., Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett, 1999. 460(2): p. 251-6.
81. Li, L., et al., ROS and Autophagy: Interactions and Molecular Regulatory Mechanisms. Cell Mol Neurobiol, 2015. 35(5): p. 615-21.
82. Rahal, A., et al., Oxidative stress, prooxidants, and antioxidants: the interplay. 2014. 2014: p. 761264.
83. Scherz-Shouval, R. and Z. Elazar, Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci, 2011. 36(1): p. 30-8.
84. Liou, G.Y. and P. Storz, Reactive oxygen species in cancer. Free Radic Res, 2010. 44(5).
85. Curtin, J.F., M. Donovan, and T.G. Cotter, Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods, 2002. 265(1-2): p. 49-72.
86. Marullo, R., et al., Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions. PLoS One, 2013. 8(11).
87. Santoro, V., et al., Role of Reactive Oxygen Species in the Abrogation of Oxaliplatin Activity by Cetuximab in Colorectal Cancer. JNCI: Journal of the National Cancer Institute, 2016. 108(6): p. djv394-djv394.
88. Papież, M.A., et al., Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species. Drug Des Devel Ther, 2016. 10: p. 557-70.
89. Ma, Q., Role of Nrf2 in Oxidative Stress and Toxicity. Annu Rev Pharmacol Toxicol, 2013. 53: p. 401-26.
90. Furfaro, A.L., et al., The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance. Oxid Med Cell Longev, 2016. 2016: p. 1958174.
91. Ashino, T., M. Yamamoto, and S. Numazawa, Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury. Sci Rep, 2016. 6.
92. Jaramillo, M.C. and D.D. Zhang, The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev, 2013. 27(20): p. 2179-91.
93. Loboda, A., et al., Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci, 2016. 73: p. 3221-47.
94. Shen, H., et al., Blockage of Nrf2 suppresses the migration and invasion of esophageal squamous cell carcinoma cells in hypoxic microenvironment. Dis Esophagus, 2014. 27(7): p. 685-92.
95. Moscat, J. and M.T. Diaz-Meco, p62 at the crossroads of autophagy, apoptosis, and cancer. Cell, 2009. 137(6): p. 1001-4.
96. Zeng, R.X., et al., p62/SQSTM1 is involved in caspase-8 associated cell death induced by proteasome inhibitor MG132 in U87MG cells. Cell Biol Int, 2014. 38(10): p. 1221-6.
97. Katsuragi, Y., Y. Ichimura, and M. Komatsu, p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. Febs j, 2015. 282(24): p. 4672-8.
98. Song, C., et al., Oxidative stress-mediated NFκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy. PLOS ONE, 2017. 12(2): p. e0171940.
99. Katsuragi, Y., Y. Ichimura, and M. Komatsu, Regulation of the Keap1–Nrf2 pathway by p62/SQSTM1. Current Opinion in Toxicology, 2016. 1: p. 54-61.
100. Liu, H., et al., Reactive oxygen species-mediated endoplasmic reticulum stress and mitochondrial dysfunction contribute to polydatin-induced apoptosis in human nasopharyngeal carcinoma CNE cells. J Cell Biochem, 2011. 112(12): p. 3695-703.
101. Green, P.S. and C. Leeuwenburgh, Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2002. 1588(1): p. 94-101.
102. Ishimura, R., K. Tanaka, and M. Komatsu, Dissection of the role of p62/Sqstm1 in activation of Nrf2 during xenophagy. FEBS Lett, 2014. 588(5): p. 822-8.
103. Trepel, J., et al., Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer, 2010. 10(8): p. 537-549.
104. Ichimura, Y., et al., Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell, 2013. 51(5): p. 618-31.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊