|
[1] M. Aigner and M. Fromme, A game of cops and robbers, Discrete Applied Math ematics 8 (1984) 111. [2] B. Alspach, Sweeping and searching in graphs: a brief survey, Matematiche 59 (2006) 537. [3] O. Amini, F. Huc, and S. Pérennes, ON THE PATH-WIDTH OF PLANAR GRAPHS, SIAM J. DISCRETE MATH., Vol. 23, No. 3, pp. 13111316,2009. [4] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoretical Computer Science, Volume 209, Issues 12, 6 December 1998, Pages 145. [5] A. Bonato, R.J. Nowakowski, The Game of Cops and Robbers on Graphs, Student Mathematical Library, vol. 61, American Mathematical Society, Providence, RI (2011). [6] R. Breisch, An intuitive approach to speleotopology, southwestern Cavers (A publication of the Southwestern Region of the National Speleological Society) VI (1967) 7278. [7] H.-H. Chou, M.-T. Ko, C.-W. Ho, and G.-H. Chen, Node-searching problem on block graphs, Discrete Applied Mathematics, Volume 156, Issue 1, 1 January 2008, Pages 5575. [8] J. A. Ellis and M. Markov, Computing the vertex separation of unicyclic graphs, Information and Computation, 192: 123161, 2004. [9] J. A. Ellis, I. H. Sudborough, and J. S. Turner, The vertex separation and search number of a graph, Information and Computation, 113(1): 5079, 1994. [10] F. V. Fomin, P. A. Golovach, J. Kratochvil, N. Nisse, and K. Suchan, Pursuing a fast robber on a graph, Theoretical Computer Science, Volume 411, Issues 79, Pages 11671181, 28 February 2010. [11] J. Gusted, On the pathwidth of chordal graphs, Discrete Applied Mathematics, Volume 45, Issue 3, 7 September 1993, Pages 233248. [12] G. Hahn, Cops, robbers and graphs, Tatra Mountain Mathematical Publications 36 (2007) 163176. [13] R. Isaacs. Dierential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization (New York: John Wiley & Sons) (1965). [14] T. Ishida and R. Korf, Moving target search, In Proceedings of International Joint Conference in Arti-cial Intelligence, pages 204211, 1991. [15] A. Kehagias, G. A. Hollinger and A. Gelastopoulos, Searching the Nodes of a Graph: Theory and Algorithms, CoRR, abs/0905.3359, 2009. [16] N. G. Kinnersley, The vertex separation number of a graph equals its path-width, Information Processing Letters 42 (6), 345350,1992. [17] L. M. Kirousis, Interval graphs and seatching, Discrete Mathematics, Volume 55, Issue 2, July 1985, Pages 181184. [18] L. M. Kirousis and C. H. Papadimitriou, Searching and Pebbling, Theoretical Computer Science, 47, pp. 205216,1986. [19] P. S. Kumar and C. E. V. Madhavan, Minimal vertex separators of chordal graphs, Discrete Applied Mathematics, Volume 89, Issues 13, Pages 155168, 1998. [20] T. Lengauer, Black-White Pebbles and Graph Separation, Acta Informatica, 16:465475, 1981. [21] M. Li, New algorithms for pathwidth computation, (2004) Doctoral, Rice University, http://hdl.handle.net/1911/18662. [22] B. Monien and I.H. Sudborough, Min cut is NP-complete for edge weighted trees, Theoret. Comput. Sci., 58 (13), pp. 209229, 1988. [23] R. Nowakowski and R. P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete Math, 43, pp 235239,1983. [24] T. D. Parsons, Pursuit-evasion in a graph, Theory and Applications of Graphs, Springer-Verlag. 426441, 1976. [25] T.D. Parsons, The search number of a connect graph, Proc, 9th S-E Conf. on Combinatatorics, Graph Theory, and Compueing, 459554,1978. [26] S.-L. Peng, C.-Y. Tang, and M.-T. Ko, A study of graph searching on special graphs, PhD. desertation, 1999 [27] S.-L. Peng, C.-W. Ho, T.-s. Hsu, M.-T. Ko and C. Y. Tang, Edge and node searching problems on trees, Theoretical Computer Science 240 (2000) 429-446. [28] S.-L. Peng, Ming-Tat Ko, Chin-Wen Ho, Tsan-sheng Hsu, and Chuan-Yi Tang, Graph searching on chordal graphs, Algorithms and Computation, Volume 1178 of the series Lecture Notes in Computer Science pp 156165, 2005. [29] N. N. Petrov, Pursuit problems without information about the evader, Dierents. Uravn., 18(1982), NO. 8, 13451352. [30] A. Quilliot, Jeux et pointes xes sur les graphes, Thése de 3eme cycle, Universite de Paris VI, pp.131145, 1978. [31] P. Scheer, A linear algorithm for pathwidth of trees, in: R. Bodendiek and R.Henn, eds., Topics in Combinatorics and Graph Theory (Physica-Verlag, Hei delberg, 1990), 613620. [32] K. Skodinis, Computing optimal linear layouts of trees in linear time, In Paterson, M., editor, Algorithms ESA 2000, volume 1879 of Lecture Notes in Computer Science, pages 403414, SpringerVerlag, 2000.
|