|
[1]WHO releases country estimates on air pollution exposure and health impact. World Health Organization. from:http://www.who.int/mediacentre/news/releases/2016/air-pollution-estimates/en/ [2]Air Pollution Deaths Cost Global Economy US$225 Billion. World Bank. from:http://www.worldbank.org/en/news/press-release/2016/09/08/air-pollution-deaths-cost-global-economy-225-billion [3]NEC智慧城市 (Smart City) | NEC. Tw.nec.com. from:http://tw.nec.com/zh_TW/solutions/smartcity/smartcity1.html [4]Baralis, E., Cerquitelli, T., Chiusano, S., Garza, P., & Kavoosifar, M. (2016). Analyzing air pollution on the urban environment. In MIPRO (pp. 1464-1469). Opatija, Croatia. [5]Rishee K.Jain, Jose M.F. Moura, & Constaintine E. Kontokosta (2014). Big Data + Big Cities: Graph Signals of Urban Air Pollution. In IEEE SIGNAL PROCESSING MAGAZINE(pp. 130-136). [6]Zheng, Y., Liu, F., & Hsieh, H. (2013). U-Air: when urban air quality inference meets big data. In KDD '13 Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1436-1444). Chicago, Illinois, USA: KDD 2013. [7]Charu C. Aggarwal.(2013). An Introduction to Sensor Data Analytics. In Managing and Mining Sensor Data(pp.1-8). [8]Han J, Kamber M, Pei J. Data Mining: Concepts and Techniques, 3rd ed. Burlington: Morgan Kaufmann Publishers Inc; 2011. [9]Zaki MJ, Meira W. Data Mining and Analysis: Fundamental Concepts and Algorithms. New York: Cambridge University Press; 2014. [10]García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J., & Herrera, F. (2016). Big data preprocessing: methods and prospects. Big Data Analytics, 1(1). http://dx.doi.org/10.1186/s41044-016-0014-0 [11]Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), Volume 41 Issue 3, July 2009, Article No. 15. [12]Song, X., Wu, M., Jermaine, C. and Ranka, S. (2007). Conditional Anomaly Detection. IEEE Transactions on Knowledge and Data Engineering, 19(5), pp.631-645. [13]U.A.B.U.A Bakar, H. Ghayvat, S.F. Hasanm, S.C. Mukhopadhyay (2016). Activity and Anomaly Detection in Smart Home: A Survey. Springer International Publishing Switzerland(pp. 191-220). [14]Friedman, N., Geiger, D. and Goldszmidt, M. (1997). Machine Learning, 29(2/3), pp.131-163. [15]Suykens, J. and Vandewalle, J. (1999). Neural Processing Letters, 9(3), pp.293-300. [16]Pham, D., Dimov, S., & Nguyen, C. (2005). Selection of K in K-means clustering. Proceedings Of The Institution Of Mechanical Engineers, Part C: Journal Of Mechanical Engineering Science, 219(1), 103-119. http://dx.doi.org/10.1243/095440605x8298 [17]Peterson, L. (2009). K-nearest neighbor. Scholarpedia, 4(2), p.1883. [18]Deepthi, C. (2010). Anomaly detection of time series.. Retrieved from the University of Minnesota Digital Conservancy, http://hdl.handle.net/11299/92985. [19]Stats and Bots. (2017). Time Series Anomaly Detection Algorithms – Stats and Bots. from:https://blog.statsbot.co/time-series-anomaly-detection-algorithms-1cef5519aef2 [20]Apache Spark Introduction. www.tutorialspoint.com. from:https://www.tutorialspoint.com/apache_spark/apache_spark_introduction.htm [21]王家林(2016). 大數據分析處理Spark技術應用與性能優質化 (1st ed.). 上奇資訊股份有限公司. [22]錢逢祥, 蔡政崇, 林政毅(2015). 不一樣的Node.js_用JavaScript打造高效能的前後台網頁程式 (2nd ed.). 松崗資產管理股份有限公司. [23]Laurens, T. How the V8 engine works?. Thibaultlaurens.github.io. http://thibaultlaurens.github.io/javascript/2013/04/29/how-the-v8-engine-works/ [24]MQTT Essentials. HiveMQ. from:http://www.hivemq.com/mqtt-essentials/ [25]MQTT Version 3.1.1. Docs.oasis-open.org. from:http://docs.oasis-open.org/mqtt/mqtt/v3.1.1 [26]Roy Thomas Fielding(2000). Architectural styles and the design of network-based software architectures. Doctoral Dissertation. [27]淺談 REST 軟體架構風格 - 從了解 REST 到設計 RESTful! - Soul & Shell Blog. from:https://blog.toright.com/ [28]MongoDB Tutorial. www.tutorialspoint.com. from:https://www.tutorialspoint.com/mongodb/index.htm [29]Redis Tutorial. www.tutorialspoint.com. from:https://www.tutorialspoint.com/redis/index.htm [30]Firebase Documentation. Firebase. from:https://firebase.google.com/docs/ [31]觀測資料查詢系統. E-service.cwb.gov.tw. from:http://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp [32]Cluster Mode Overview - Spark 2.1.1 Documentation. Spark.apache.org. from:https://spark.apache.org/docs/latest/cluster-overview.html [33]Apache Spark Hidden REST API. Gist, from:https://gist.github.com/arturmkrtchyan/5d8559b2911ac951d34a [34]行政院環境保護署-空氣品質監測網. Taqm.epa.gov.tw. from:http://taqm.epa.gov.tw/taqm/tw/b0201.aspx [35]常態分布. Zh.wikipedia.org. from:https://zh.wikipedia.org/zh-tw/%E6%AD%A3%E6%80%81%E5%88%86%E5%B8%83 [36]Knuth D, Art of Computer Programming, Vol 2, page 232, 3rd edition [37]Accurately computing sample variance online. Johndcook.com. https://www.johndcook.com/blog/standard_deviation/ [38]Trilles, S., Schade, S., Belmonte, Ó., & Huerta, J. (2015). Real-Time Anomaly Detection from Environmental Data Streams. Lecture Notes In Geoinformation And Cartography, 125-144. http://dx.doi.org/10.1007/978-3-319-16787-9_8 [39]Keeping the Process on Target: CUSUM Charts | BPI Consulting. (2017). Spcforexcel.com. from:https://www.spcforexcel.com/knowledge/variable-control-charts/keeping-process-target-cusum-charts [40]Breunig, M., Kriegel, H., Ng, R., & Sander, J. (2000). LOF. Proceedings Of The 2000 ACM SIGMOD International Conference On Management Of Data - SIGMOD '00. http://dx.doi.org/10.1145/342009.335388 [41]Das, T., & Zhu, S. (2017). Faster Stateful Stream Processing in Apache Spark Streaming. Databricks. from:https://databricks.com/blog/2016/02/01/faster-stateful-stream-processing-in-apache-spark-streaming.html [42]Hayes, M., & Capretz, M. (2015). Contextual anomaly detection framework for big sensor data. Journal Of Big Data, 2(1). http://dx.doi.org/10.1186/s40537-014-0011-y
|