|
[1]Ssekulima, E. B., Anwar, M. B., Al Hinai, A., & El Moursi, M. S. (2016). Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review. IET Renewable Power Generation, 10(7), 885-989. [2]M. Q. Raza, & A. Khosravi, A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renewable and Sustainable Energy Reviews, 50, (2015) 1352-1372. [3]A. I. Saleh, A. H. Rabie, & K. M. Abo-Al-Ez, A data mining based load forecasting strategy for smart electrical grids. Advanced Engineering Informatics, 30(3), (2016) 422-448. [4]Ghasemi, A., Shayeghi, H., Moradzadeh, M., & Nooshyar, M. (2016). A novel hybrid algorithm for electricity price and load forecasting in smart grids with demand-side management. Applied Energy, 177, 40-59. [5]Coelho, V. N., Coelho, I. M., Coelho, B. N., Reis, A. J., Enayatifar, R., Souza, M. J., & Guimarães, F. G. (2016). A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment. Applied Energy, 169, 567-584. [6]Li, S., Wang, P., & Goel, L. (2016). A novel wavelet-based ensemble method for short-term load forecasting with hybrid neural networks and feature selection. IEEE Transactions on Power Systems, 31(3), 1788-1798. [7]Li, S., Wang, P., & Goel, L. (2015). Short-term load forecasting by wavelet transform and evolutionary extreme learning machine. Electric Power Systems Research, 122, 96-103. [8]Sáez, D., Ávila, F., Olivares, D., Cañizares, C., & Marín, L. (2015). Fuzzy prediction interval models for forecasting renewable resources and loads in microgrids. IEEE Transactions on Smart Grid, 6(2), 548-556. [9]Cecati, C., Kolbusz, J., Różycki, P., Siano, P., & Wilamowski, B. M. (2015). A novel RBF training algorithm for short-term electric load forecasting and comparative studies. IEEE Transactions on industrial Electronics, 62(10), 6519-6529. [10]Høverstad, B. A., Tidemann, A., Langseth, H., & Öztürk, P. (2015). Short-term load forecasting with seasonal decomposition using evolution for parameter tuning. IEEE Transactions on Smart Grid, 6(4), 1904-1913. [11]Chen, Y., Yang, Y., Liu, C., Li, C., & Li, L. (2015). A hybrid application algorithm based on the support vector machine and artificial intelligence: an example of electric load forecasting. Applied Mathematical Modelling, 39(9), 2617-2632. [12]Jiang, P., & Ma, X. (2016). A hybrid forecasting approach applied in the electrical power system based on data preprocessing, optimization and artificial intelligence algorithms. Applied Mathematical Modelling, 40(23), 10631-10649. [13]Gupta, S., Singh, V., Mittal, A. P., & Rani, A. (2016, February). Weekly load prediction using wavelet neural network approach. In Computational Intelligence & Communication Technology (CICT), 2016 Second International Conference on (pp. 174-179). IEEE. [14]Rana, M., & Koprinska, I. (2016). Forecasting electricity load with advanced wavelet neural networks. Neurocomputing, 182, 118-132. [15]Sudheer, G., & Suseelatha, A. (2015). Short term load forecasting using wavelet transform combined with Holt–Winters and weighted nearest neighbor models. International Journal of Electrical Power & Energy Systems, 64, 340-346. [16]Bahrami, S., Hooshmand, R. A., & Parastegari, M. (2014). Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm. Energy, 72, 434-442. [17]Ali, U., Buccella, C., & Cecati, C. (2016, October). Households electricity consumption analysis with data mining techniques. In Industrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE (pp. 3966-3971). IEEE. [18]Bessa, R. J., Trindade, A., & Miranda, V. (2015). Spatial-temporal solar power forecasting for smart grids. IEEE Transactions on Industrial Informatics, 11(1), 232-241. [19]Golestaneh, F., Pinson, P., & Gooi, H. B. (2016). Very short-term nonparametric probabilistic forecasting of renewable energy generation—With application to solar energy. IEEE Transactions on Power Systems, 31(5), 3850-3863. [20]Shah, A. S. B. M., Yokoyama, H., & Kakimoto, N. (2015). High-precision forecasting model of solar irradiance based on grid point value data analysis for an efficient photovoltaic system. IEEE Transactions on Sustainable Energy, 6(2), 474-481. [21]Fidan, M., Hocaoğlu, F. O., & Gerek, Ö. N. (2014). Harmonic analysis based hourly solar radiation forecasting model. IET Renewable Power Generation, 9(3), 218-227. [22]Sperati, S., Alessandrini, S., & Delle Monache, L. (2016). An application of the ECMWF Ensemble Prediction System for short-term solar power forecasting. Solar Energy, 133, 437-450. [23]Larson, D. P., Nonnenmacher, L., & Coimbra, C. F. (2016). Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest. Renewable Energy, 91, 11-20. [24]Lin, K. P., & Pai, P. F. (2016). Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. Journal of Cleaner Production, 134, 456-462. [25]Masa-Bote, D., Castillo-Cagigal, M., Matallanas, E., Caamaño-Martín, E., Gutiérrez, A., Monasterio-Huelín, F., & Jiménez-Leube, J. (2014). Improving photovoltaics grid integration through short time forecasting and self-consumption. Applied Energy, 125, 103-113. [26]Li, Y., Su, Y., & Shu, L. (2014). An ARMAX model for forecasting the power output of a grid connected photovoltaic system. Renewable Energy, 66, 78-89. [27]Junior, J. G. D. S. F., Oozeki, T., Ohtake, H., Shimose, K. I., Takashima, T., & Ogimoto, K. (2014). Regional forecasts and smoothing effect of photovoltaic power generation in Japan: an approach with principal component analysis. Renewable Energy, 68, 403-413. [28]Leva, S., Dolara, A., Grimaccia, F., Mussetta, M., & Ogliari, E. (2017). Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power. Mathematics and Computers in Simulation, 131, 88-100. [29]Almeida, M. P., Perpiñán, O., & Narvarte, L. (2015). PV power forecast using a nonparametric PV model. Solar Energy, 115, 354-368. [30]AlHakeem, D., Mandal, P., Haque, A. U., Yona, A., Senjyu, T., & Tseng, T. L. (2015, July). A new strategy to quantify uncertainties of wavelet-GRNN-PSO based solar PV power forecasts using bootstrap confidence intervals. In Power & Energy Society General Meeting, 2015 IEEE (pp. 1-5). IEEE. [31]Rana, M., Koprinska, I., & Agelidis, V. G. (2016, July). Solar power forecasting using weather type clustering and ensembles of neural networks. In Neural Networks (IJCNN), 2016 International Joint Conference on (pp. 4962-4969). IEEE. [32]Mori, H., & Takahashi, A. (2012, May). A data mining method for selecting input variables for forecasting model of global solar radiation. In Transmission and Distribution Conference and Exposition (T&D), 2012 IEEE PES (pp. 1-6). IEEE. [33]Wang, Z., Koprinska, I., & Rana, M. (2016, July). Clustering based methods for solar power forecasting. In Neural Networks (IJCNN), 2016 International Joint Conference on (pp. 1487-1494). IEEE. [34]Ian H. Witten, Eibe Frank, Mark A. Hall. Data mining: practical machine learning tools and techniques (third edition). Morgan Kaufmann, San Francisco, CA, USA, 2011. [35]C.C. Chang, C.J Li “LIBSVM: A Library for Support Vector Machines” Journal ACM Transactions on Intelligent Systems and Technology (TIST) Volume 2 Issue 3. April 2011. [36]Hong, T., Pinson, P., & Fan, S. (2014). Global energy forecasting competition 2012. [37]Paisitkriangkrai, P.(2012).Linear regression and support vector regression. University Lecture. [38]Peirong, J., Juan, C., & Wenchen, Z. (2008, September). Theory of grey systems and its application in electric load forecasting. In Cybernetics and Intelligent Systems, 2008 IEEE Conference on (pp. 1374-1378). IEEE. [39]Xin-hui, D., Feng, T., & Shao-qiong, T. (2010, September). Study of power system short-term load forecast based on artificial neural network and genetic algorithm. In Computational Aspects of Social Networks (CASoN), 2010 International Conference on (pp. 725-728). IEEE. [40]Bi, Y., Zhao, J., & Zhang, D. (2004, November). Power load forecasting algorithm based on wavelet packet analysis. In Power System Technology, 2004. PowerCon 2004. 2004 International Conference on (Vol. 1, pp. 987-990). IEEE. [41]Ming-guang, Z., & Lin-rong, L. (2011, September). Short-term load combined forecasting method based on BPNN and LS-SVM. In Power Engineering and Automation Conference (PEAM), 2011 IEEE (Vol. 1, pp. 319-322). IEEE. [42]Feng, L., & Liu, Z. (2006). Effects of multi-objective genetic rule selection on short-term load forecasting for anomalous days. In Power Engineering Society General Meeting, 2006. IEEE (pp. 7-pp). IEEE.
|