跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 03:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Panida Sincharern
研究生(外文):Panida Sincharern
論文名稱:Litter decomposition rate of six dominant tree species in a subtropical lowland plantation, Taiwan
論文名稱(外文):Litter decomposition rate of six dominant tree species in a subtropical lowland plantation, Taiwan
指導教授:張世杰張世杰引用關係
指導教授(外文):Shih-Chieh Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:自然資源與環境學系
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:85
外文關鍵詞:canopy opennessleaf area indexspecific leaf arealitter decomposition ratenative tree speciessubtropical forest plantation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
Litter decomposition is an ecological process associated with carbon and nutrient cycling in forest ecosystems. Litter quality is the main influencing factor in determining the rate of decomposition (k), which differs with tree species. Understanding the mechanisms and drivers that control the decomposition process may improve forecasts of global carbon cycle and ecosystem dynamics under conditions of climate change in the future. The purpose of this study is to measure the k value of leaf litter from six dominant tree species, Autumn Maple (Bischofia javanica), Camphor (Cinnamomum camphora), Himalayan Ash (Fraxinus griffithii), Golden Rain Tree (Koelreuteria henryi), Formosan Sweet Gum (Liquidambar formosana), and Zelkova (Zelkova serrata), in a subtropical forest in Taiwan using a litterbag technique. Canopy openness (CO), leaf area index (LAI), and specific leaf area (SLA) describe the characteristics of individual stands. The hemisphere photography assessed seasonal change in a canopy. The results show that CO is conversely correlated with LAI in all tree species and seasons. The mean of the seasonal change of individual CO increased from 23.43 to 70.08, while LAI decreased from 1.77 to 0.33 from December 2015 to November 2016. There was low correlation between SLA and the decomposition rate among tree species. Only the Himalayan Ash and Golden Rain Tree had similar k values and a similar SLA. After 372 days of field incubation from July 2015 to June 2016, the decomposition rate of the leaf litter was 1.22, 1.30, 0.76, 0.88, 1.11, and 0.56 yr-1, for Autumn Maple, Camphor, Himalayan Ash, Golden Rain Tree, Formosan Sweet Gum, and Zelkova, respectively. The rates of decomposition in this study are in the normal range of the k value of the subtropical tree species. Leaf litter chemical concentrations varied by species, time, levels for C/N ratio, P, S, K, Ca, and Na. The results confirm a strong relationship between C/N and litter decomposition rate.
Acknowledgements i
Abstract ii
Table of Contents iii
List of Tables iv
List of Figures v
1. Introduction 1
2. Materials and Methods 9
3. Results 21
4. Discussion 35
5. Conclusion 49
6. References 51
7. Appendix 63
Aerts, R., 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 439-449.
Agren, G.I., F.O. Andersson, 2012. Terrestrial Ecosystem Ecology Principles and Applications. In. NRC Research Press.
Alhamd, L., S. Arakaki, A. Hagihara, 2004. Decomposition of leaf litter of four tree species in a subtropical evergreen broad-leaved forest, Okinawa Island, Japan. Forest Ecology and Management 202, 1-11.
Almagro, M., J. Martínez-López, F.T. Maestre, A. Rey, 2017. The contribution of photodegradation to Litter decomposition in semiarid Mediterranean grasslands depends on its interaction with local humidity conditions, litter quality and position. Ecosystems 20, 527-542.
Asner, G.P., J.M. Scurlock, J. A Hicke, 2003. Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology and Biogeography 12, 191-205.
Austin, A.T., M.S. Méndez, C.L. Ballaré, 2016. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proceedings of the National Academy of Sciences 113, 4392-4397.
Baker, N.R., S.D. Allison, 2015. Ultraviolet photodegradation facilitates microbial litter decomposition in a Mediterranean climate. Ecology 96, 1994-2003.
Baldocchi, D.D., K.B. Wilson, L. Gu, 2002. How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest-an assessment with the biophysical model CANOAK. Tree physiology 22, 1065-1077.
Bassey, I.N., E.U. Opara, 2015. Review of Soil Microbial Flora Associated with Forest Floor
Litter in Tropical Rainforest Zone-A Case in South Eastern Nigeria. International Journal 26.
Beaudet, M., C. Messier, 2002. Variation in canopy openness and light transmission following selection cutting in northern hardwood stands: an assessment based on hemispherical photographs. Agricultural and Forest Meteorology 110, 217-228.
Berg, B., 2000. Litter decomposition and organic matter turnover in northern forest soils. Forest
Ecology and Management 133, 13-22.
Berg, B., 2014. Decomposition patterns for foliar litter–A theory for influencing factors. Soil Biology and Biochemistry 78, 222-232.
Berg, B., M. Davey, A. De Marco, B. Emmett, M. Faituri, S. Hobbie, M.-B. Johansson, C. Liu, C. McClaugherty, L. Norell, 2010. Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry 100, 57-73.
Berg, B., A.V. De Santo, F.A. Rutigliano, A. Fierro, G. Ekbohm, 2003. Limit values for plant litter decomposing in two contrasting soils—influence of litter elemental composition. Acta Oecologica 24, 295-302.
Berg, B., B. Erhagen, M.-B. Johansson, M. Nilsson, J. Stendahl, F. Trum, L. Vesterdal, 2015.
Manganese in the litter fall-forest floor continuum of boreal and temperate pine and spruce forest ecosystems–A review. Forest Ecology and Management 358, 248-260.
Berg, B., C. McClaugherty, 2014. Plant Litter. Springer, Heidelberg.
Berg, B., K. Steffen, C. McClaugherty, 2007. Litter decomposition rate is dependent on litter Mn concentrations. Biogeochemistry 82, 29-39.
Bernhard-Reversat, F., 1999. The leaching of eucalyptus hybrids and Acacia auriculiformis leaf litter: laboratory experiments on early decomposition and ecological implications in Congolese tree plantations. Applied Soil Ecology 12, 251-261.
Blair, J.M., 1988. Nitrogen, sulfur and phosphorus dynamics in decomposing deciduous leaf litter in the southern Appalachians. Soil Biology and Biochemistry 20, 693-701.
Bocock, K., O. Gilbert, 1957. The disappearance of leaf litter under different woodland conditions. Plant and Soil 9, 179-185.
Borchert, R., 1998. Responses of tropical trees to rainfall seasonality and its long-term changes. Climatic Change 39, 381-393.
Chapin, F.S., P.A. Matson, P. Vitousek, 2011. Principles of terrestrial ecosystem ecology. Springer Science & Business Media.
Chen, C.-H., 1993. 71 Sapindaceae. in: Huang, T.-C., (Eds.), Flora of Taiwan, secound ed. Volume 3. Editorrial Committee of the Flora of Taiwan., Taipei, pp. 599-608 Chen, J.M., P.M. Rich, S.T. Gower, J.M. Norman, S. Plummer, 1997. Leaf area index of boreal forests: Theory,techniques, and measurements. Journal of Geophysical Research 102, 29,429-429,443.
Chien, S.-C., J.-H. Xiao, Y.-H. Tseng, Y.-H. Kuo, S.-Y. Wang, 2013. Composition and antifungal activity of balsam from Liquidambar formosana Hance. Holzforschung 67, 345-351.
Cornelissen, J., 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. Journal of Ecology, 573-582.
Cornelissen, J.H., N. Pérez-Harguindeguy, S. Díaz, J.P. Grime, B. Marzano, M. Cabido, F. Vendramini, B. Cerabolini, 1999. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytologist 143, 191-200.
Cornwell, W.K., J.H. Cornelissen, K. Amatangelo, E. Dorrepaal, V.T. Eviner, O. Godoy, S.E. Hobbie, B. Hoorens, H. Kurokawa, N. Pérez‐Harguindeguy, 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11, 1065-1071.
Cotrufo, M.F., B. Berg, W. Kratz, 1998a. Increased atmospheric CO2 and litter quality. Environmental Reviews 6, 1-12.
Cotrufo, M.F., M.a.J.I. Briones, P. Ineson, 1998b. Elevated CO2 affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate quality. Soil Biology and Biochemistry 30, 1565-1571.
Couteaux, M.-M., P. Bottner, B. Berg, 1995. Litter decomposition, climate and liter quality. Trends in Ecology & Evolution 10, 63-66.
De Santo, A.V., A. De Marco, A. Fierro, B. Berg, F.A. Rutigliano, 2009. Factors regulating litter
mass loss and lignin degradation in late decomposition stages. Plant and Soil 318, 217-228.
Decker, K.L., R.E. Boerner, 2006. Mass loss and nutrient release from decomposing evergreen and deciduous Nothofagus litters from the Chilean Andes. Austral Ecology 31, 1005-1015.
Denslow, J.S., 1987. Tropical rainforest gaps and tree species diversity. Annual Review of Ecology and Systematics, 431-451.
Enríquez, S., C.M. Duarte, K. Sand-Jensen, 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C: N: P content. Oecologia 94, 457-471.
Facelli, J.M., S.T. Pickett, 1991. Plant litter: its dynamics and effects on plant community structure. The botanical review 57, 1-32.
Findlay, S., M. Carreiro, V. Krischik, C.G. Jones, 1996. Effects of damage to living plants on leaf litter quality. Ecological Applications 6, 269-275.
Folland, C.K., T. Karl, K.Y. Vinnikov, 1990. Observed climate variations and change. Climate change: the IPCC scientific assessment 195, 238.
Frazer, G.W., C.D. Canham, K.P. Lertzman, 1999. Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York.
Gömöryová, E., J. Gregor, V. Pichler, D. Gömöry, 2006. Spatial patterns of soil microbial characteristics and soil moisture in a natural beech forest. Biologia (Lahore, Pakistan) 61, S329-S333.
Gonzalez, G., T.R. Seastedt, 2001. Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology 82, 955-964.
Gower, S.T., C.J. Kucharik, J.M. Norman, 1999. Direct and indirect estimation of leaf area index, f APAR, and net primary production of terrestrial ecosystems. Remote Sensing of Environment 70, 29-51.
Graça, M.A., F. Bärlocher, M.O. Gessner, 2005. Methods to study litter decomposition: a practical guide. Springer Science & Business Media.
Guendehou, G.S., J. Liski, M. Tuomi, M. Moudachirou, B. Sinsin, R. Mäkipää, 2014.
Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55, 207-220.
Guo, P., H. Jiang, S. Yu, Y. Ma, R. Dou, X. Song, 2010. Comparison of litter decomposition of six species of coniferous and broad-leaved trees in subtropical China. Chinese Journal of Applied and Environmental Biology 2009, 655-659.
Hall, M.C., P. Stiling, B.A. Hungate, B.G. Drake, M.D. Hunter, 2005. Effects of elevated CO2 and herbivore damage on litter quality in a scrub oak ecosystem. Journal of Chemical Ecology 31, 2343-2356.
Hall, M.C., P. Stiling, D.C. Moon, B.G. Drake, M.D. Hunter, 2006. Elevated CO2 increases the long‐term decomposition rate of Quercus myrtifolia leaf litter. Global Change Biology 12, 568-577.
Hamidpour, R., S. Hamidpour, M. Hamidpour, M. Shahlari, 2013. Camphor (Cinnamomum camphora), a traditional remedy with the history of treating several diseases. International Journal of Case Reports and Images (IJCRI) 4, 86-89.
Hata, K., J.-I. Suzuki, N. Kachi, Y. Yamamura, 2006. A 19-year study of the dynamics of an invasive alien tree, Bischofia javanica, on a subtropical oceanic island. Pacific Science 60, 455-470.
Hatakka, A., 1994. Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiology Reviews 13, 125-135.
Head, L., P. Muir, 2004. Nativeness, invasiveness, and nation in Australian plants. Geographical Review, 199-217.
Hikosaka, K., 2016. Optimality of nitrogen distribution among leaves in plant canopies. Journal
of Plant Research 129, 299-311.
Hofrichter, M., 2002. Review: lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology 30, 454-466.
Hoshika, Y., E. Paoletti, K. Omasa, 2012. Parameterization of Zelkova serrata stomatal conductance model to estimate stomatal ozone uptake in Japan. Atmospheric Environment 55, 271-278.
Hou, P.-C.L., X. Zou, C.-Y. Huang, H.-J. Chien, 2005. Plant litter decomposition influenced by soil animals and disturbance in a subtropical rainforest of Taiwan. Pedobiologia 49, 539-547.
Huang, J., X. Wang, E. Yan, 2007. Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China. Forest Ecology and Management 239, 150-158.
Huang, S.W., 1993. Structural change in Taiwan's agricultural economy. Economic Development and Cultural Change 42, 43-65.
Hsieh, C.-F., 1993. 51 Hamamelidaceae. in: Huang, T.-C., (Eds.), Flora of Taiwan,
Volume 3. Editorrial Committee of the Flora of Taiwan., Taipei, pp. 414-504.
Hsieh, C.F., Chaw, S.-M.,Wang, J.-C., 1993. 61 EUPHORBIACEAE. in n: Huang, T.-C., (Eds.),
Flora of Taiwan, Volume 3. Editorrial Committee of the Flora of Taiwan., Taipei, pp. 1-9.
Jantan, I.b., S.H. Goh, 1992. Essential oils of Cinnamomum species from Peninsular Malaysia.
Journal of Essential Oil Research 4, 161-171.
Jonckheere, I., S. Fleck, K. Nackaerts, B. Muys, P. Coppin, M. Weiss, F. Baret, 2004. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology 121, 19-35.
Jordan, C.F., 1969. Derivation of leaf‐area index from quality of light on the forest floor.
Ecology 50, 663-666.
Kirschbaum, M.U., 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry 27, 753-760.
Klotzbücher, T., K. Kaiser, G. Guggenberger, C. Gatzek, K. Kalbitz, 2011. A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 92, 1052-1062.
Lashof, D.A., D.R. Ahuja, 1990. Relative contributions of greenhouse gas emissions to global warming. Nature 344, 529-531.
LeBauer, D.S., K.K. Treseder, 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371-379.
Lee, C.-H., C.-H. Wang, 2017. Estimating resident’s preference of the land use program surrounding the forest park, Taiwan. Sustainability 9, 598.
Lee, T.-H., Y.-H. Chiang, C.-H. Chen, P.-Y. Chen, C.-K. Lee, 2009. A new flavonol galloylrhamnoside and a new lignan glucoside from the leaves of Koelreuteria henryi Dummer. Journal of Natural Medicines 63, 209-214.
Lemos-Filho, J., C. Barros, G. Dantas, L. Dias, R. Mendes, 2010. Spatial and temporal variability of canopy cover and understory light in a Cerrado of Southern Brazil. Brazilian Journal of Biology 70, 19-24.
Li, Z.-a., S.-l. Peng, D.J. Rae, G.-y. Zhou, 2001. Litter decomposition and nitrogen mineralization of soils in subtropical plantation forests of southern China, with special attention to comparisons between legumes and non-legumes. Plant and Soil 229, 105-116.
Liao, J.-C., 1996. 27 LAURACEAE. in: Huang, T.-C., (Eds.), Flora of Taiwan, Volume 2.
Editorrial Committee of the Flora of Taiwan., Taipei, pp. 433-499.
Liu, W.-Y., 2011. Taiwan Sugar Corporation's Participation in the Mechanism of Payment for Environmental Services (PES). World Academy of Science, Engineering and Technology, International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering 5, 232-238.
Liu, Z., X. Zou, 2002. Exotic earthworms accelerate plant litter decomposition in a Puerto Rican pasture and a wet forest. Ecological Applications 12, 1406-1417.
Lo, K.-A., 2005. Agricultural Landowners' Participation in the Plain Landscape Afforestatin Program (PLAP): A Case Study in Taitung County, Taiwan. Quarterly Journal of Forest Research 27, 17-30.
Loranger, G., J.-F. Ponge, D. Imbert, P. Lavelle, 2002. Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality. Biology and Fertility of Soils 35, 247-252.
Lovett, G.M., M.A. Arthur, K.F. Crowley, 2016. Effects of calcium on the rate and extent of litter decomposition in a northern hardwood forest. Ecosystems 19, 1-11.
Meentemeyer, V., 1978. Macroclimate and lignin control of litter decomposition rates. Ecology
59, 465-472.
Mehta, N., J. Dinakaran, S. Patel, A. Laskar, M. Yadava, R. Ramesh, N. Krishnayya, 2013.
Changes in litter decomposition and soil organic carbon in a reforested tropical deciduous cover (India). Ecological Research 28, 239-248.
Melillo, J.M., J.D. Aber, J.F. Muratore, 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63, 621-626.
Mishra, G., R. Kumar, 2016. Plant litter decomposition: drivers insight to the ecological process. European Journal of Biological Research 6, 176-185.
Mo, J., S. Brown, J. Xue, Y. Fang, Z. Li, 2006. Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China. Plant and Soil 282, 135-151.
Morris, D.M., J.H. Kimmins, D.R. Duckert, 1997. The use of soil organic matter as a criterion of the relative sustainability of forest management alternatives: a modelling approach using FORECAST. Forest Ecology and Management 94, 61-78.
Morton, J.F., M. Collectanea, 1984. Nobody loves the Bischofia anymore. In, Proc. Florida state Hortic. Soc, pp. 241-244.
Muhammad, A., Z.-U.-D. Khan, 2012. Bischofia javanica: A new record to the Flora of Pakistan. BIOLOGIA (PAKISTAN) 58, 179-183.
Murphy, K.L., J.M. Klopatek, C.C. Klopatek, 1998. The effects of litter quality and climate on decomposition along an elevational gradient. Ecological Applications 8, 1061-1071.
Nascimento, A.R.T., J.M.F. Fagg, C.W. Fagg, 2007. Canopy openness and LAI estimates in two seasonally deciduous forests on limestone outcrops in Central Brazil using hemispherical photographs. Revista Arvore 31, 167-176.
New, M., D. Liverman, H. Schroder, K. Anderson, 2011. Four degrees and beyond: the potential for a global temperature increase of four degrees and its implications. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 369, 6-19.
Niinemets, U., 2007. Photosynthesis and resource distribution through plant canopies. Plant, Cell & Environment 30, 1052-1071.
Nishida, S., H. Tsukaya, H. Nagamasu, M. Nozaki, 2006. A comparative study on the anatomy and development of different shapes of domatia in Cinnamomum camphora (Lauraceae). Annals of Botany 97, 601-610.
Norby, R.J., M.F. Cotrufo, P. Ineson, E.G. O’Neill, J.G. Canadell, 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127, 153-165.
Olson, J.S., 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322-331.
Oosterbaan, A., E. Hochbichler, N. Nicolescu, H. Spiecker, 2009. Silvicultural principles, goals and measures in growing valuable broadleaved tree species. Die Bodenkultur 60, 45-51.
Osono, T., 2007. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecological Research 22, 955-974.
Osono, T., H. Takeda, 2004. Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecological Research 19, 593-602.
Pandey, R., G. Sharma, S. Tripathi, A. Singh, 2007. Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India. Forest Ecology and Management 240, 96-104.
Parker, G.G., M.M. Davis, S.M. Chapotin, 2002. Canopy light transmittance in Douglas-fir-
western hemlock stands. Tree physiology 22, 147-157.
Parton, W., W.L. Silver, I.C. Burke, L. Grassens, M.E. Harmon, W.S. Currie, J.Y. King, E.C.
Adair, L.A. Brandt, S.C. Hart, 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315, 361-364.
Pérez-Harguindeguy, N., S. Díaz, E. Garnier, S. Lavorel, H. Poorter, P. Jaureguiberry, M.S. Bret-
Harte, W.K. Cornwell, J.M. Craine, D.E. Gurvich, 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61, 167-234.
Poorter, H., J.R. Evans, 1998. Photosynthetic nitrogen-use efficiency of species that differ
inherently in specific leaf area. Oecologia 116, 26-37.
Prescott, C.E., 2005. Do rates of litter decomposition tell us anything we really need to know?
Forest Ecology and Management 220, 66-74.
Rahman, M.M., J. Tsukamoto, M.M. Rahman, A. Yoneyama, K.M. Mostafa, 2013. Lignin and its effects on litter decomposition in forest ecosystems. Chemistry and Ecology 29, 540-553.
Reich, P.B., 1995. Phenology of tropical forests: patterns, causes, and consequences. Canadian Journal of Botany 73, 164-174.
Reich, P.B., D.P. Turner, P. Bolstad, 1999. An approach to spatially distributed modeling of net primary production (NPP) at the landscape scale and its application in validation of EOS NPP products. Remote Sensing of Environment 70, 69-81.
Roxburgh, J.R., D. Kelly, 1995. Uses and limitations of hemispherical photography for estimating forest light environments. New Zealand Journal of Ecology, 213-217.
Salinas, N., Y. Malhi, P. Meir, M. Silman, R. Roman Cuesta, J. Huaman, D. Salinas, V. Huaman,
A. Gibaja, M. Mamani, 2011. The sensitivity of tropical leaf litter decomposition to temperature: results from a large‐scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytologist 189, 967-977.
Sang-on, P., R. Poolsiri, 2010. Leaf litter decomposition in exotic tree plantations at the Royal
Agricultural Station Angkhang, Chiang Mai province. Thai Journal of Forestry (Thailand) 29, 26-35.
Santiago, L.S., 2007. Extending the leaf economics spectrum to decomposition: evidence from a tropical forest. Ecology 88, 1126-1131.
Sasaki, T., J. Imanishi, K. Ioki, Y. Morimoto, K. Kitada, 2008. Estimation of leaf area index and canopy openness in broad-leaved forest using an airborne laser scanner in comparison with high-resolution near-infrared digital photography. Landscape and Ecological Engineering 4, 47-55.
Schimel, D.S., 1995. Terrestrial ecosystems and the carbon cycle. Global Change Biology 1, 77-91.
Schreeg, L.A., M.C. Mack, B.L. Turner, 2013. Nutrient‐specific solubility patterns of leaf litter across 41 lowland tropical woody species. Ecology 94, 94-105.
Seely, B., C. Welham, J.A. Blanco, 2010. Towards the application of soil organic matter as an indicator of forest ecosystem productivity: Deriving thresholds, developing monitoring systems, and evaluating practices. Ecological Indicators 10, 999-1008.
Shaver, G.R., J. Canadell, F.S. Chapin III, J. Gurevitch, J. Harte, G. Henry, P. Ineson, S. Jonasson, J. Melillo, L. Pitelka, L. Rustad, 2000. Global Warming and Terrestrial Ecosystems: A Conceptual Framework for Analysis. BioScience 50.
Sundqvist, M.K., R. Giesler, D.A. Wardle, 2011. Within-and across-species responses of plant traits and litter decomposition to elevation across contrasting vegetation types in subarctic tundra. PloS One 6, e27056.
Wang, H., S. Liu, J. Mo, 2010. Correlation between leaf litter and fine root decomposition among subtropical tree species. Plant and Soil 335, 289-298.
Wang, Q., S. Wang, Y. Huang, 2008. Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in southern China. Forest Ecology and Management 255, 1210-1218.
Ward, J.K., B.R. Strain, 1999. Elevated CO2 studies: past, present and future. Tree physiology 19, 211-220.
Wieder, W.R., C.C. Cleveland, A.R. Townsend, 2009. Controls over leaf litter decomposition in wet tropical forests. Ecology 90, 3333-3341.
Wilson, P.J., K. Thompson, J.G. Hodgson, 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist 143, 155-162.
Witkamp, M., 1963. Microbial populations of leaf litter in relation to environmental conditions and decomposition. Ecology 44, 370-377.
Wright, S.J., C.P. Van Schaik, 1994. Light and the phenology of tropical trees. The American
Naturalist 143, 192-199.
Wu, C.-H., Y.-H. Lo, J.A. Blanco, S.-C. Chang, 2015. Resilience assessment of lowland plantations using an ecosystem modeling approach. Sustainability 7, 3801-3822.
Xu, X.-n., H. Shibata, T. Enoki, 2006. Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: dynamics of mineral nutrients. Journal of Forestry Research 17, 1-6.
Xu, X., E. Hirata, 2005. Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics. Plant and Soil 273, 279-289.
Xu, X., E. Hirata, T. Enoki, Y. Tokashiki, 2004a. Leaf litter decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance. Plant Ecology 173, 161-170.
Xu, X., E. Hirata, H. Shibata, 2004b. Effect of typhoon disturbance on fine litterfall and related nutrient input in a subtropical forest on Okinawa Island, Japan. Basic and Applied Ecology 5, 271-282.
Xuluc-Tolosa, F., H. Vester, N. Ramı́, J. Castellanos-Albores, D. Lawrence, 2003. Leaf litter decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche, Mexico. Forest Ecology and Management 174, 401-412.
Yang, Y.-P. Lu, S.-Y., 1996. 6. ULMACEAE , in: Huang, T.-C., (Eds.), Flora of Taiwan, Volume 2. Editorrial Committee of the Flora of Taiwan., Taipei, pp.124 - 135.
Yang, Y.-P. Lu, S.-Y., 1998. 118. OLEACEAE , in: Huang, T.-C., (Eds.), Flora of Taiwan, 41 Volume 4. Editorrial Committee of the Flora of Taiwan., Taipei, pp.128 – 143. Yang, Y.S., J.F. Guo, G.S. Chen, J.S. Xie, L.P. Cai, P. Lin, 2004. Litterfall, nutrient return, and leaf-
litter decomposition in four plantations compared with a natural forest in subtropical China. Annals of Forest Science 61, 465-476.
Yanni, S.F., E.C. Suddick, J. Six, 2015. Photodegradation effects on CO 2 emissions from litter and SOM and photo-facilitation of microbial decomposition in a California grassland. Soil Biology and Biochemistry 91, 40-49.
Yirdaw, E., O. Luukkanen, 2004. Photosynthetically active radiation transmittance of forest plantation canopies in the Ethiopian highlands. Forest Ecology and Management 188, 17-24.
Yulin, L., M. Qingtao, Z. Xueyong, C. Jianyuan, 2008. Relationship between fresh leaf traits and leaf litter decomposition of 20 plant species in Kerqin sandy land, China. Acta Ecologica Sinica 28, 2486-2492.
Zhang, D., D. Hui, Y. Luo, G. Zhou, 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology 1, 85-93.
Zhang, H., W. Yuan, W. Dong, S. Liu, 2014. Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity 20, 240-247.
Zhang, X., W. Wang, 2015. Control of climate and litter quality on leaf litter decomposition in different climatic zones. Journal of Plant Research 128, 791-802.
Zhang, Y., J.M. Chen, J.R. Miller, 2005. Determining digital hemispherical photograph exposure for leaf area index estimation. Agricultural and Forest Meteorology 133, 166-181.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top