跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 05:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘威諭
研究生(外文):Wei-Yu Pan
論文名稱:利用不同高程GPS訊號延遲量反演的可降水量探討其與降雨量之關係-以花蓮地區為例
論文名稱(外文):GPS-derived precipitable water vapor from different elevation and its relationship with rainfall data - a case study in Hualien, Taiwan
指導教授:張有和張有和引用關係
指導教授(外文):Yo-Ho Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:自然資源與環境學系
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:483
中文關鍵詞:全球衛星定位系統可降水量
外文關鍵詞:GPSprecipitable water vapor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
  近年來利用GPS計算大氣中的可降水量(Precipitable Water, PW)之技術趨於成熟,GPS訊號延遲反演計算的可降水量資料與水氣微波輻射儀(Water Vapor Radiometer, WVR)和探空氣球(Radiosonde)資料有極高相關性也是很好的替代資料,部分文獻中提到降雨量與可降水量之相關性佳;但另一部份文獻中則指出無明顯相關性,顯示降雨量可能因降雨機制不同而異;GPS觀測PW之平均值也受GPS測站位置的高程影響,一般研究中高程愈高所計算之PW愈低,常呈現反比關係,顯示PW在不同高程可能有特定之分布這些現象在前人研究中較少探究其原因。台灣因GPS連續站密集,地勢起伏大,且有豐富的降雨事件正好可供驗證。
  本研究使用MIT(Massachusetts Institute of Technology)GAMIT/Globk 10.60版本,與中央氣象局提供之GPS連續站資料,比較在不加入溫度、大氣壓力的條件下,進行GPS-PW計算,與利用地面氣象資訊計算之理論值做比較,並探討其與降雨量之間關係。
研究結果顯示,(1)不加入地面氣象資訊(溫度、壓力)條件下解算的PW值,在花蓮站(高程46.6m)解算成果誤差約1 mm(1),但在玉山站(高程3876.6m)誤差約5.4 mm(1),其原因是GAMIT軟體使用全球大氣壓力數值過高(高度修正不足)所導致。(2)花蓮站周邊六個GPS連續站PW解算成果,所有平地站得到的GPS-PW有很好的重複性,誤差約1.7mm(1),而影響PW值高低最大的因素是GPS高程。(3)在長期觀測上,梅雨季鋒面對PW平均值的影響比颱風大,但颱風行經時對PW短暫影響可達20-30mm左右的幅度變化。(4) 不同高程之GPS-PW,如果未進行乾延遲修正,GPS-PW只會反應實際天頂總延遲量而非濕延遲量,所以因相鄰站天頂總延遲量相似相關性良好,約在0.79-0.98間,未修正之PW平均值隨著GPS高程愈高而愈低(R2=0.97),代表GPS高程愈高天頂總延遲量愈小。(5) 不同時間長度之平均降雨量與PW之相關性,顯示拉長平均時間由1小時至數十小時,PW與降雨量之間可能存在著一定的趨勢或相關性。
 In recent years, the technique of calculating Precipitable Water (PW) by using GPS signal delay has developed rapidly, the GPS-PW data is a good proxy of those of water vapor radiometer (WVR) and Radiosonde data. Some previous studies showed rainfall and PW have a good correlation; but others showed there is no correlation at all. This may indicate that the mechanism of rainfall is the key to the understanding of rainfall forecast. The higher of a GPS station elevation, the lower of its GPS-PW, this may result from the spatial distribution of PW is elevation-related and need further study. Taiwan has dense GPS stations either in low relief urban areas or high mountain areas and there are abundant rainfall events, therefore this area is a good test site for the previous two hypotheses of rainfall-PW and PW-elevation relationships.

 In this study, GAMIT / Globk 10.60 has been chosn to calculate GPS-PW using the GPS data of the IGS and the Central Meteorological Bureau, Taiwan. The GPS-PW calculation used either adding or without adding the temperature and pressure information in order to check the accuracy and precision of the GPS-PW result and its relationship with rainfall data.

 The results show that (1) without adding the temperature and pressure data, the error of GPS-PW is about 1mm (1) at Hualian station (GPS height of 46.6m) but the error at the Yushan station (GPS height of 3876.6m) is about 5.4 mm (1). This results from the GAMIT software adopted the average global atmospheric pressure value was too high. (2) 6 GPS stations around Hualien station have similar GPS-PW results, this indicated GPS-PW method has a good repeatability and precision (the error is about 1.7mm(1)). (3) In a 12 years GPS-PW observation of Hualien station, it shows that the impact of the rainy season/monsoon seasons on the GPS-PW are greater than those of typhoons, but the increase of GPS-PW during the typhoon event is larger (20-30mm). (4) GPS-PW at different elevations shows a correlation of 0.79-0.98 among neighboring stations. Although lower GPS height has higher GPS-PW (R2= 0.97), this uncorrected GPS-PW only reflect the neighboring stations have a similar Zenith total delay.(5) The correlation between the average rainfall and GPS-PW between 1 hour and 48 hours shows that there is a correlation between GPS-PW and rainfall with longer time span of 24 or 48 hours.
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 4
第二章 文獻回顧與理論基礎 5
2-1 文獻回顧 5
2-2 GPS 衛星定位系統 10
2-2-1 GPS訊號結構 10
2-2-2 虛擬距離(Pseudorange)觀測 11
2-2-3 載波相位(Carrier Phase)觀測 13
2-3 GPS誤差來源 15
2-4 大氣延遲模型 17
2-5 濕延遲量轉換 22
2-6 映射函數(Mapping Function) 23
2-7 重力常數修正 24
第三章 研究材料與方法 27
3-1 研究流程 27
3-1-1 GPS資料與測站位置 28
3-1-2 氣象資料 30
3-2 GPS解算軟體 31
3-3 資料處理流程 32
3-3-1 GAMIT/GLOBK軟體介紹 33
3-3-2 GPS資料解算設定 35
3-4 資料整理與分析 37
3-5 乾延遲與濕延遲理論值計算 39
第四章 實驗結果與討論 41
4-1 GAMIT軟體解算成果 41
4-2 花蓮市周邊GPS連續站解算GPS-PW成果比較 46
4-2-1 花蓮站GPS-PW與降雨關係 48
4-2-2 強降雨(颱風)與GPS-PW關係 50
4-2-3 不同時間長度之平均降雨量與PW之相關性 58
4-3  GPS高程對可降水量影響 59
4-4 討論 62
第五章 結論 65
參考文獻 67
附錄 72
GAMIT軟體解算設定 72
莫拉克颱風資料 75
蘇迪勒颱風資料 95
花蓮站資料 102
玉山站資料 293
王承賢(2000)WVR、GPS 及氣球探空觀測可降水量之比較。國立中央大學太空科學研究所碩士論文。共78頁
李育齊(2014)應用GPS 推估遲延量於數值氣象模擬以610 水災(2012)為例。
國立中央大學太空科學研究所碩士論文。共69頁
唐永宗(2009)可降水量在不同GPS測站環境的表現。國立成功大學地球科學
系碩士論文。共65頁
陳文建(2006)GPS 與探空氣球資料觀測可降水量與降雨之關係。國立中央大
學太空科學研究所碩士論文。共81頁
曾清涼、儲美慶(1999)《GPS衛星測量原理與應用》第二版,臺南:國立成功
大學衛星資訊中心。
曾珮莉(2005)近即時GPS 觀測可降水技術之研究。國立中央大學太空科學研
究所碩士論文。共95頁
楊承益(2008)分析以全球定位系統近即時估計可降水之可行性。國立中央
大學太空科學研究所碩士論文,共114頁
鄭琦翰(2004)GPS信號估算可降水量與降雨關係之研究。 國立中央大學水
文科學研究所碩士論文,共75頁

Askne, J.and Nordius (1987) Estimation of tropospheric delay for microwaves from
surface weather data, Radio Science,22(3), 379-386
Bevis, M., S. Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., Ware R. H. (1992)
GPS Meteorology – remote-sensing of atmospheric water-vapor using the global positioning system. Journal of Geohysical Research-Atmospheres, 97(D14), 15787-15801
Bevis, M., Businger, Chiswell S., Herring T. A. Anthes R. A., Rocken C., and Ware R. H.
(1994) GPS Meteorology: Mapping zenith wet delay onto precipitable water.Journal of Applied Meteorology, 33, 379-386
Boehm, J., A. Niell, P. Tregoning, and H. Schuh (2006). Global Mapping
Function(GMF): A new empirical mapping function based on numerical weather
model data. Geophys. Res. Lett. 33, 15-26
Choy, S., Wang, S., Zhang, K., Kuleshov, Y. (2013) GPS sensing of precipitalbe water
vapur during the March 2010 Melbourne storm, Advances in Space Research, 52, 1688-1699
Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F.,
van Hove, T., Ware, R., McClucky, S., Herring, T., King, R. (1996) GPS meteorology: direct estimation of the absolute value of precipitable water. Journal of Applied Meteorolofy, 24, 830-838
Dai, A., Wang, J., Ware, R.H., Hove, T.V. (2002) Diurnal variation in water vapor over
North America and its implicaitons for sampling errors in radiosonde humidity, Journal of Geophysical Research, 107, ACL 1-11


DAVIS, J. L., T.A. HERRING, I.I. SHAPIRO, A.E.E. ROGERS, and G. ELGERED, (1985):
Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimated baseline length. Radio Science, 20, 1593–1607.
Elgered G., Davis J. L., Herring T. A., and Shapiro I. I.(1991) Geodesy by radio
interferometery: Water vapor radiometry for estimation of the wet delay, J. Geophys. Res., 96, 6541-6555
Fadil, A., Barriot, J.P., Ortéga, P. , Sichoix, L. (2009) Seasonal Atmospheric Water Vapor
Monitoring Over Tahiti Using GPS Measurements, Proceedings of the 11-th Pacific Science Inter-Congress
Ferna´ndez, L.I.,Salio, P., Natali, M.P., Meza, A.M. (2010) Estimation of precipitable
water vapour from GPS measurements in Argentina: Validation and qualitative analysis of results, Advanvces in Space Research, 46, 879-894
Hogg, D. C., F. O. Guiraud, and M. T. Decker (1981) Measurement of excess
transmission length on earth-space path. Aston. Astrophys., 95, 304-307
Kačmařík, M. Skřivánková, P. (2011) Comparison of satellite orbit ephemerides for
use in GPS meteorology, Advances in Space Research, 48, 264-269
Kleijer, F. (2004) Troposphere Modeling and Filtering for Precise GPS Leveling. Ph. D.
thesis, Department of Mathematical Geodesy and Positioning, Deft University of Technologym, Kluyverweg 1. P.O. Box 5058, 2600 GB DELFT, the Netherlands. 260 pp.
Liou, Y. A., Huang, C. Y. (2000) GPS observations of PW during the passage of a
typhoon, Earth Planets Space, 52 ,109-712
Liou, Y. A., Huang, C. Y., and Teng, Y. T.,(2000) Precipitatble water observed by
ground-based GPS receivers and microwave radiometry, Earth, Planets, and Space, 52, 445-450

Liou Y. A., Teng, T.,Van Hove, T., Liljegren, C.(2001) Comparison of Precipitable Water
Observations in the Near Tropics by GPS, Microwave Radiometer, and Radiosondes, Journal of Applied Meteorology, 40, 5-15
Musa, T.A., Amir, S., Othman, R., Ses, S., Omar, K., Abdullah, K., Lim, S., Rizos, C.
(2011) GPS meteorology in a low-lattitude region: Remote sensing of atmospheric water vapor over the Malysian Penisula, Journal of Atmopheric and Solar-Terrestrial Physics, 73, 2410-2422
Niell, A., (1996) Global mapping functions for the atmosphere delay at radio
wavelengths, Journal of Geophysical Research, 101(B2), 3227-3246.
Ningombam, S. S., Jade, S., Shrungeshwara, T.S., Song, H.-J. (2016) Validation of
water vapor retrieval from Moderate Resolution Imaging Spectro-radiometer (MODIS) in near infrared channels using GPS data over IAO-Hanle, in the trans-Himalayan region Journal of Atmopheric and Solar-Terrestial Physics, 137, 76-85
Owens, J.C., (1967) Optical refractive index of air: Dependece on pressure,
temperature, and composition, Appl. Opt.,6 51-58
Saastamoinen, J.,(1972) Atmospheric correction for the troposphere and
stratosphere in radio ranging of satellites, in The Use of Artificial Satellites for Geodesy, Geophys. Monogr. Ser.,vol15. 247-251
Seco, A., Ramirez, A., Serna, E., Prieto, E., Garcia, R., Moreno, A., Cantera, J.C.,
Miqueleiz, L., Preigo, J.E. (2012) Rain pattern analysis and forecast model based on GPS estimated atmospheric water vapor content, Atmospheric Environment, 49, 85-93
Shi, J., Xu, C., Guo, J., Gao, Y. (2015) Real-Time GPS Precise Point Positioning-Based
Precipitable Water Vapor Estimation for Rainfall Monitoring and Forecasting, IEE TRANSACTIONS ON GEOSIENCE AND REMOTE SENSING, 53, NO.6
Sickle J. V. (2007) GPS for Land Surveyors. Third Edition. Taylor&Francis, New York.
Thayer, D. (1974) An improved equation for the radio refractive index of air. Radio
Sci., 9, 803-807
Tralli, D. M., and S. M. Lichten (1990) Stochastic estimation of tropospheric path
delays in Global Positioning System geodetic measurements. Bull. Geod., 64, 127-159
Tregoning, P., Bores, R., O’Brien, D., Hendy, M. (1998) Accuracy of absolute
precipitable water vapor estimates from GPS observations. Journal of Geophysical Research, 103, 28,701-28,710
Yeah, T. K., Hong, J. S., Wang, C. S., Chen, C. H., Chen, K. H., Fong, C. T. (2016)
Determining the precipitable water vapor with ground-based GPS and comparing its yearly variation to rainfall over Taiwan, Advances in Space Research, 57. 2496-2507
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊