跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 01:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張澔軒
研究生(外文):Hao-Hsuan Chang
論文名稱:沉積銅銦硫奈米顆粒於氧化鋅奈米線應用於光電化學分解水之研究
論文名稱(外文):Deposition of CuInS2 Nanoparticle on Zinc Oxide Nanowires for Photoelectrochemical Water Splitting
指導教授:徐裕奎
指導教授(外文):Yu-Kuei Hsu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:60
中文關鍵詞:銅銦硫量子點氧化鋅奈米線光電化學分解水產氫太陽能
外文關鍵詞:CuInS2 quantum dotsZnO nanowiresPhotoelectrochemical Water Splitting
相關次數:
  • 被引用被引用:2
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來奈米材料逐漸受到重視,其中的量子點因三圍都小於德布洛伊波長,
產生了量子侷限效應,使得其物理特性與化學特性都與塊材時有所不同,其中銅
銦硫量子點具有無毒、直接能隙、良好的吸收係數,因此非常適合作為光電材料。
本實驗使用液相化學法合成銅銦硫量子點以浸泡法(Dip-coating process)沉積
於水熱法所成長的氧化鋅奈米線上,為了使墊子有良好的傳輸路徑,實驗中在氧
化鋅奈米線與銅銦硫量子點中間以連續離子層吸附與反應法(SILAR)沉積的硫化
銦電子傳輸層,使得電子能通過階梯式的能階順利地到對電極產生氫氣。從場發
式電子顯微鏡(FE-SEM)觀察到經過SILAR 法與浸泡法的製程後,氧化鋅奈米線的
表面並無團聚現象,再透過拉曼光譜(Raman)與X 射線繞射光譜(XRD)結構分析可
以知道以SILAR 法所和沉積的化合物為硫化銦、以浸泡法確實可以沉積銅銦硫量
子點,而X 射線光電子光譜(XPS)可以證明化學式分別為In2S3 與CuInS2,而官能
基的去除不是必須使用甲苯或氯仿這兩種有毒化合物才能置換,依據XPS 的量測
可以證明通過熱處理就能使官能基從銅銦硫量子點表面移除,但是從吸收光譜卻
又可以知道經過高溫熱處理後銅銦硫量子點仍保有量化效應。從線性循環伏安法
觀察到硫化銦的加入確實使電子傳輸路徑順暢,而使光電流大幅提升,光電流由
原本純氧化鋅的0.5 mA/cm2 變為2.4 mA/cm2,增加了四倍。通過簡單的合成方式
與綠色的製程所做出的銅銦硫量子點/硫化銦/氧化鋅奈米線結構具有不錯產氫效
率,證明了此結構是具有產氫潛力的。
Nanomaterials in recent years have attracting attention, including quantum dots.
Quantum dots in three dimensions are smaller than de Broglie wavelength, creating
quantum confinement effect, which made their physical and chemical characteristics
different from bulk materials. CuInS2 quantum dots in all kinds of quantum dots have
some advantages, such as nontoxic, direct bandgap, high absorption coefficient, so
CuInS2 quantum dots are suitable as optoelectronic materials.
In this work, synthesized ZnO nanowires by hydrothermal method and deposited
CuInS2 quantum dots on ZnO nanowires by dip-coating process. In order to make a
good transmission path for electrons, the In2S3 buffer layer was synthesized by
Successive Ionic Layer Adsorption and Reaction (SILAR) method between ZnO
nanowires and CuInS2 quantum dots. The surface of ZnO nanowires were observed by
Field Emission Scanning Electron Microscope (FE-SEM). X-ray Diffractometer (XRD)
and Raman Spectrum show the structure and the vibration mode of CuInS2 quantum
dots and ZnO nanowires. X-ray Photoelectron Spectroscopy (XPS) not only confirm
element type but also proof after thermal treatment, ligand can be remove. Under the
best synthesis condition, the structure of CuInS2 quantum dots/In2S3/ZnO nanowires
exhibits remarkable photocurrent of 2.4 mA/cm2 at potential of 0.6 V vs. Ag/AgCl.
These results demonstrate the structure of CuInS2 quantum dots/In2S3/ZnO nanowires
have great potential in solar hydrogen application.
目錄
致謝 ................................................................................................................... I
摘要 ................................................................................................................... II
ABSTRACT ........................................................................................................... III
目錄 .................................................................................................................. IV
圖表索引 .......................................................................................................... VII
第1 章 簡介 .................................................................................................... 1
1-1 前言 ................................................................................................................. 1
1-2 光電化學分解水產氫 ..................................................................................... 2
第2 章 銅銦硫量子點沉積於金屬氧化物 .......................................................... 5
2-1 理論與文獻回顧 ............................................................................................. 5
2-2 研究動機 .......................................................................................................... 8
第3 章 實驗 .......................................................................................................... 9
3-1 藥品 .................................................................................................................. 9
1. 碘化亞銅 (Copper Iodide) .............................................................................. 9
2. 醋酸銦 (Indium Acetate) ................................................................................. 9
3. 正十二烷硫醇 (1-Dodecanethiol;DDT) ....................................................... 9
4. 丙酮 (Acetone) ................................................................................................ 9
5. 甲醇 (Methanol) .............................................................................................. 9
6. 醋酸鋅 (Zinc Acetate) ................................................................................... 10
7. 硝酸鋅 (Zinc Nitrate) .................................................................................... 10
8. 六亞甲基四胺 (Hexamethylenetetramine;HMTA) .................................... 10
9. 聚醚酰亞胺 (Polyetherimide;PEI) ............................................................. 10
10. 氨水 (Ammonia) ....................................................................................... 10
11. 氯化銦 (Indium chloride) .......................................................................... 10
12. 硫化鈉 (Sodium sulfide) ............................................................................ 11
硝酸鋅 (Zinc Nitrate) ............................................................................................. 11
3-2 使用儀器 ........................................................................................................ 12
1. 旋轉塗佈器 (Spin Coater) ............................................................................ 12
2. 平板加熱器 (Hot Plate) ................................................................................ 13
3. 高溫箱型爐 (Box Furnace) ........................................................................ 13
4. 加熱包 (Mantle Heater For Flask) ................................................................ 14
5. 高溫管狀爐 (Tube Furnace) ....................................................................... 14
3-3 實驗步驟 ........................................................................................................ 15
3-3-1 銅銦硫量子點製備方式 .............................................................................. 15
3-3-2 氧化鋅制備方式 ......................................................................................... 16
3-2-3 銅銦硫量子點沉積於氧化鋅奈米線的製備方式與其熱處理 ................. 17
3-2-4 硫化銦電子傳輸層製備方式 ..................................................................... 17
3-4 分析儀器 ........................................................................................................ 18
1. 光激發螢光光譜 (Photoluminescence, PL) .................................................. 18
2. 吸收光譜 (Absorption Spectrum;Abs) ....................................................... 20
3. 拉曼光譜 (Raman Spectrum) ........................................................................ 21
4. X 射線繞射光譜 (X-ray diffractometer;XRD) .......................................... 22
5. X 射線光電子光譜 (X-ray Photoelectron Spectroscopy;XPS) ................. 23
6. 場發式掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope) 24
7. 電化學分析儀 (PEC、IPCE) ....................................................................... 25
第4 章 結果與討論 ...................................................................................... 29
4-1 銅銦硫量子點與銅銦硫/氧化鋅的特性 ....................................................... 29
4-1-1. 銅銦硫量子點 ............................................................................................ 29
4-1-2. 銅銦硫量子點沉積於氧化鋅奈米線 ........................................................ 33
4-2 銅銦硫/硫化銦/氧化鋅的特性 ...................................................................... 37
4-2-1 硫化銦/氧化鋅的特性 ................................................................................. 39
4-2-2 銅銦硫/硫化銦/氧化鋅的特性 .................................................................... 45
第5 章 結論與未來展望 ..................................................................................... 55
參考文獻 .............................................................................................................. 59
1. 李怡靜, 葡萄糖修飾氧化鋅表面應用於染料敏化太陽能電池之研究. 國立
東華大學光電工程學系光電工程碩士班碩士論文, 2016.
2. Zhou, Z.J., et al., Solution fabrication and photoelectrical properties of CuInS(2)
nanocrystals on TiO(2) nanorod array. ACS Appl Mater Interfaces, 2011. 3(7): p.
2189-94.
3. Wang, Y.Q., et al., A facile in situ synthesis route for CuInS(2)
quantum-dots/In(2)S(3) co-sensitized photoanodes with high photoelectric
performance. ACS Appl Mater Interfaces, 2013. 5(22): p. 11858-64.
4. Jara, D.H., et al., Size-Dependent Photovoltaic Performance of CuInS2Quantum
Dot-Sensitized Solar Cells. Chemistry of Materials, 2014. 26(24): p. 7221-7228.
5. Han, M., et al., Pulsed laser deposition of CuInS2 quantum dots on
one-dimensional TiO2 nanorod arrays and their photoelectrochemical
characteristics. Journal of Power Sources, 2016. 318: p. 121-127.
6. Li, L., et al., Efficient synthesis of highly luminescent copper indium
sulfide-based core/shell nanocrystals with surprisingly long-lived emission. J
Am Chem Soc, 2011. 133(5): p. 1176-9.
7. Yue, W., et al., CuInS2 quantum dots synthesized by a solvothermal route and
their application as effective electron acceptors for hybrid solar cells. Journal of
Materials Chemistry, 2010. 20(35): p. 7570.
8. Hao, Z., Y. Cui, and G. Wang, Colloidal synthesis of wurtzite CuInS2
nanocrystals and their photovoltaic application. Materials Letters, 2015. 146: p.
77-80.
9. Wonkeun Chung, H.J., Chang Hun Lee, and Sung Hyun Kim, Fabrication of
high color rendering index white LED using Cd-free wavelength tunable Zn
doped CuInS2 nanocrystals. Optics express, 2012. 20(22): p. 25071-25076.
10. Vallejo, W., C. Díaz-Uribe, and K. Rios, Methylene Blue Photocatalytic
Degradation under Visible Irradiation on In2S3 Synthesized by Chemical Bath
Deposition. Advances in Physical Chemistry, 2017. 2017: p. 1-5.
11. Chouchene, B., et al., Porous Al-doped ZnO rods with selective adsorption
properties. Applied Surface Science, 2017. 409: p. 102-110.
12. Huang, C., et al., Carbon quantum dot decorated hollow In2S3microspheres
with efficient visible-light-driven photocatalytic activities. RSC Adv., 2016.
6(46): p. 40137-40146.
60
13. Kokal, R.K., et al., CuInS 2 /CdS Quantum Dots and
Poly(3,4-ethylenedioxythiophene)/Carbon-Fabric Based Solar Cells.
Electrochimica Acta, 2016. 219: p. 107-120.
14.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top