1. Raman, C.V., & Krishnan, K. S., A change of wave-length in light scattering. Nature, 1928. 121(3051): p. 619.
2. Fleischmann, M., Patrick J. Hendra, and A. James McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974. 26.5(163): p. 166.
3. Bourbonnais, R., Dónal Leech, and Michael G. Paice, Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochimica et Biophysica Acta (BBA)-General Subjects 1998. 1979.3(381): p. 390.
4. Yang, X., et al. , Hydrogen peroxide and glucose biosensor based on silver nanowires synthesized by polyol process. Analyst 2012. 137.18(4362): p. 4367.
5. Mandke, M.V., S.-H. Han, and H.M. Pathan, Growth of silver dendritic nanostructuresvia electrochemical route. CrystEngComm, 2012. 14(1): p. 86-89.
6. Lee, J., et al. "Plasmonic photoanodes for solar water splitting with visible light." Nano letters 12.9 (2012): 5014-5019., Plasmonic photoanodes for solar water splitting with visible light. Nano letters, 2012. 12.9(5014): p. 5019.
7. Hsu, C.-L., et al., Tunable UV-and Visible-Light Photoresponse Based on p-ZnO Nanostructures/n-ZnO/Glass Peppered with Au Nanoparticles. ACS Applied Materials & Interfaces, 2017. 9.17(14935): p. 14944.
8. Ding, S.Y., et al. "Surface‐Enhanced Raman Spectroscopy (SERS): General Introduction." Encyclopedia of Analytical Chemistry (2014). "Surface‐Enhanced Raman Spectroscopy (SERS): General Introduction. Encyclopedia of Analytical Chemistry, 2014.
9. Contreras-Cáceres, R., Benjamín Sierra-Martín, and Antonio Fernández-Barbero, Surface-enhanced Raman scattering sensors based on hybrid nanoparticles. Microsensors. InTech,, 2011.
10. Fateixa, S., Helena IS Nogueira, and Tito Trindade. , Hybrid nanostructures for SERS: materials development and chemical detection. Physical Chemistry Chemical Physics 2015. 17.33(21046): p. 21071.
11. Chen, J.H., et al. , Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon 2002. 40.8(1193): p. 1197.
12. Duan, L., et al., Hemoglobin protein hollow shells fabricated through covalent layer-by-layer techniqu. Biochemical and biophysical research communications, 2007. 354.2(357): p. 362.
13. 維基百科(銀).
14. Fang, J., et al. , Silver nanowires growth via branch fragmentation of electrochemically grown silver dendrites. Chemical Communications, 2009. 9(1130): p. 1132.
15. Jana, N.R., Latha Gearheart, and Catherine J. Murphy. , Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available: UV–VIS spectra of silver nanorods. Chemical Communications 2001. 7(617): p. 618.
16. Sun, Y., et al. , Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone. Chemistry of Materials, 2002. 14.11(4736): p. 4745.
17. Sun, Y., et al. ", Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidenc. Nano letters 2003. 3.7(955): p. 960.
18. Tompkins, H.H., Ed.(Academic, New York, 1972), pp." Organometallics 10 (1991): 652.
19. 維基百科(過氧化氫).
20. Johan, M.R., et al., Synthesis and growth mechanism of silver nanowires through different mediated agents (CuCl 2 and NaCl) polyol process. Journal of Nanomaterials 2014(54).
21. 黃宏勝, FE-SEM/CL/EBSD 分析技術簡介. 工業材料雜誌, 2003.
22. . Mahalingam, J.S.P.C., S. Rajendran, M. Jayachandran, M.J. Chockalingam, Galvanostatic deposition and characterization of cuprous oxide thin films. Journal of Crystal Growth, 2000. 216(304): p. 310.
23. 陳枝政, 電漿氧化製備銅氧化物及銅-二氧化矽復合材料之太陽能選擇性 吸收膜之性質研究. 台灣科技大學材料科技研究所碩士論文, 民國98年。.24. K. Samanta, P.B., and R. S. Katiyar, J. Appl. Phys., 105, 113929(2009)
25. Stiles, P.L., et al., Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem (Palo Alto Calif), 2008. 1: p. 601-26.
26. Minami, T., Yuki Nishi, Toshihiro Miyata,and Jun-ichi Nomoto. Applied Physics Express, 2011. 4(062): p. 301.
27. Kurowska, E., et al., Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochimica Acta, 2013. 104: p. 439-447.
28. Wei, Y., et al. , Silver nanowires coated on cotton for flexible pressure sensors. Journal of Materials Chemistry 2016. 4.5(935): p. 943.
29. Chen, L., et al. "Single gold-nanoparticles-decorated silver/carbon nanowires as substrates for surface-enhanced Raman scattering detection." RSC Advances 3.48 (2013): 26102-26109.
30. L. Mao, P.O., K. Yamamoto, T. Kato, , Continuous on-line measurement of
cerebral hydrogen peroxide using enzyme-modified ring-disk plastic carbon
film electrode. Analytical Chemistry 2002. 74(3684).
31. K.-C. Lin, T.-H.T., S.-M. Chen, , Performing enzyme-free H2 O2 biosensor and
simultaneous determination for AA DA, and UA by MWCNT–PEDOT film. Biosensors and Bioelectronics 2010. 26(608).
32. B.N. Khlebtsov, Z.L., J. Ye, N.G. Khlebtsov, Au@ Ag core/shell cuboids and dumbbells: optical properties and SERS response. 167, 2015. 64-75.
33. N.L. Netzer, Z.T., B. Chen, C. Jiang,, Tailoring the SERS enhancement mechanisms of silver nanowire Langmuir–Blodgett films via galvanic replacement reaction,. J. Phys. Chem, 2013. 117(16187): p. 16194.
34. Y. Li, K.Z., J. Zhao, J. Ji, C. Ji, B. Liu, A three-dimensional silvernanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules,. Talanta 2016. 147(493-500).
35. Z. Wang, M.L., W. Wang, M. Fang, Q. Sun, C. Liu, Floating silver film: a flexible surface-enhanced Raman spectroscopy substrate for direct liquid phase detection at gas. liquid interfaces, Nano Res, 2016. 9( 1148–1158).
36. ] T.Y. Lu, Y.C.L., Y.T. Yen, C.C. Yu, H.L. Chen, Astronomical liquid mirrors as highly ultrasensitive, broadband-operational surface-enhanced Raman scattering-active substrates. J. Colloid Interface Sci, 2016. 466(80-90).
37. Y. Tian, F.W., Y. Liu, F. Pang, X. Zhang, Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection,Electrochim. Electrochim. Acta, 2014. 146(646-653).
38. A.M. Golsheikh, N.M.H., H.N. Lim, R. Zakaria, C.Y. Yin, One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection. Carbon, 2013. 62(405-412).
39. G.G. Kumar, K.J.B., K.S. Nahm, J.H. Yun, A facile one-pot green synthesis of reduced graphene oxide and its composites for non enzymatic hydrogen peroxide sensor applications. RSC Adv., 2014. 4(7944-7951).
40. L. Zhong, S.G., X. Fu, F. Li, D. Han, L. Guo, Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H2O2 biosensor,. Electrochim. Acta 2013. 89(22-238).
41. X. Qin, Y.L., W. Lu, G. Chang, A.M. Asiri, A.O. Al-Youbi, X. Sun, One-step synthesis of Ag nanoparticles-decorated reduced graphene oxide and their application for H2O2 detection,. Electrochim. Acta 2012. 79(46-51).
42. X. Qin, H.W., Z. Miao, J. Li, Q. Chen, A novel non-enzyme hydrogen peroxide sensor based on catalytic reduction property of silver nanowires,. Talanta 2015. 139(56-61).
43. X. Gao, L.J., Q. Wu, Z. Chen, X. Lin, A nonenzymatic hydrogen peroxide sensor based on silver nanowires and chitosan film. Electroanalysis 2012. 24(1771-1777).
44. Nia, P.M., Meng, W. P., & Alias, Y, Hydrogen peroxide sensor: Uniformly decorated silver nanoparticles on polypyrrole for wide detection range. Applied Surface Science, 2015. 357(1565-1572).
45. Wen, Y., et al., From DVD to dendritic nanostructure silver electrode for hydrogen peroxide detection. Biosens Bioelectron, 2013. 41: p. 857-61.
46. Cataldo, F., "HYDROGEN PEROXIDE PHOTOLYSIS WITH DIFFERENT UV LIGHT SOURCES INCLUDING A NEW UV-LED LIGHT SOURCE." Annals of West University of Timisoara. Series of Chemistry 2014. 23.2(99).