跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 14:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐瑞鴻
研究生(外文):Jui-Hung Hsu
論文名稱:以奈米結構的銀做為拉曼表面增益以及電化學偵測的基板之研究
論文名稱(外文):Silver Nanostructure for Efficient SERS Substrate and Electrochemical Detection
指導教授:徐裕奎
指導教授(外文):Yu-Kuei Hsu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:71
中文關鍵詞:銀奈米線過氧化氫表面拉曼散射光電化學電化學分析法
外文關鍵詞:silver nanowirebiosensorH2O2branched silver nanowirelocalized surface plasmonhot electron
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用便宜的基板咖啡濾紙以及簡易的製程浸泡法(dip coating)吸附銀金屬奈米線後,將基板應用於表面拉曼散射(SERS)技術以及非酶式電化學感測器偵測過氧化氫的應用。首先在拉曼表面散射的實驗中,偵測標靶溶劑4-氨基苯硫酚(4-ATP)的偵測極限為1x10-11 M。而在電化學感測器的實驗中,先利用循環伏安法證明基板確實可檢測過氧化氫,以及偵測過氧化氫的極限為0.1 mM以及靈敏度為219 mAmM-1cm-2。實驗結果證明了基板為文獻中少數擁有雙功能生物檢測(SERS以及電化學偵測法)的基板。
接著為了降低偵測極限,將銀奈米線成長為樹枝狀的銀奈米線並且將基板更換為透明導電玻璃(FTO),同樣應用於表面拉曼散射(SERS)以及電化學感測器中。首先偵測標靶溶劑4-氨基苯硫酚(4-ATP)的偵測極限為1x10-16 M。而電化學感測器中,偵測過氧化氫的極限為0.25 M,並且擁有兩種不同量測靈敏度,分別是小濃度(0.25 M-0.3 mM) 的560 mAmM-1cm-2,以及大濃度的(0.3-2.6 mM) 的160 mAmM-1cm-2。此實驗結果證明在FTO上成長樹枝狀的銀奈米線的基板也擁有相當優異的雙功能檢測能力,並且在表面拉曼散射中的偵測極限為文獻中最低。
最後我們也嘗試著將樹枝狀銀奈米線應用於光電化學中,並成功的量測出光電流,我們也證實此光電流的產生為表面電漿將銀奈米線激發出熱電子注入溶液中與過氧化氫進行還原反應。而我們量測的最大光電流密度為0.2 mAcm-2,此結果證實純金屬的電極也能量測到光電流,並且可以應用於光電化學實驗中。
First, we use a simple dip-coating route to deposit silver nanowires (Ag NWs) on coffee filter (CF), which would function as a new type substrates of SERS and non-enzyme biosensor for detecting the H2O2 in this study. For SERS, the Ag NW/CF substrate exhibits low detection limit of 1x10-11 M for 4-Aminothiophenol (4-ATP). And for biosensor, the Ag NW/CF electrode exhibits detection limit of 0.1 mM and high sensitivity of 219 mAmM-1cm-2 for detection of H2O2 in concentration range 100 M ~ 25 mM.
In order to find out the way to enhance the efficiency in the detections of H2O2 and SERS signal, we utilized the electrochemical growth technique to fabricate dendritic Ag NW on FTO substrate for achieving the low detection limit. Because the branched Ag NW/FTO has large active surface for electrocatalytic reaction, our results show a sensitivity of 1.44 mAcm-2mM-1 to H2O2 and the concentration range from 0.25M to 2.6 mM with a low detection limit of 0.25 mM. In addition, the branched Ag NW also exhibited an excellent and significant performance for molecular sensing by using SERS with ultra-low concentration detection limit of 1x10-16 M for 4-ATP.
Finally, the branched Ag NW/FTO functions as photoelectrode for the detection of H2O2 under illumination based on the characteristics of SPR and electro-catalytic effects. In this study, we observed that the maximum photocurrent density of -0.2 mAcm-2 can be reached at potential -0.6 V v.s. Ag/Ag Cl and the reason is due to localized surface plasmon resonance leading to the contribution of the hot electrons in photocurrent.
目錄 IV
圖表索引 VII
第一章、序論 1
1. 前言 1
1.1.1.拉曼光譜 2
1.1.2.電化學分析法 3
1.1.3.研究動機 4
第二章、 實驗原理 5
2.1 表面增強拉曼散射(Surface Enhanced Raman Scattering (SERS)) 5
2.1.1 電磁效應 5
2.1.2 化學效應 6
2.2 化學分析法(electrochemical analysis) 6
2.2.1 循環伏安法(cyclic voltammetry) 6
2.2.2 電流時間法(Amperometric i-t curve) 7
材料介紹 7
2.3 銀奈米線 7
2.3.1 銀奈米線合成: 7
2.3.2 銀奈米線光電特性: 7
2.4 過氧化氫 8
第三章、實驗步驟與方法 9
3.1 第一部分:咖啡濾紙吸附銀奈米線 9
3.1.1 銀奈米線製備 9
3.1.2 工作基板製備 10
3.1.3 SERS量測 10
3.1.4 電化學分析法偵測過氧化氫 10
3.2 樹枝狀銀奈米線 11
3.2.1 工作基板製備 11
3.2.2 樹枝狀銀奈米線製備 11
3.2.3 SERS量測 11
3.2.4 電化學分析法偵測過氧化氫 12
3.3 實驗儀器及研究原理 13
3.3.1 紫外可見光光譜儀(UV-Visible Spectrophotometer) 13
3.3.2 掃描式場發射電子顯微鏡(Field Emission Scanning Electron Microscope) 14
3.3.3 X光光電子能譜儀(X-ray Photoelectron Spectrometer) 15
X-ray繞射儀(XRD) 16
3.3.4 拉曼光譜(Raman spectrum) 17
3.3.5 電化學分析儀 18
3.3.6可變波長光源系統(Solar Simulator) 19
第四章、結果與討論 21
4.1 銀奈米線/咖啡濾紙之製備及應用於感測元件 21
4.1.1 前言–銀奈米線/咖啡濾紙 21
4.1.2 FE-SEM之形貌分析 22
4.1.3 XRD之結構分析 23
4.1.4 XPS鍵結分析 24
4.1.5 Surface-enhanced Raman scattering (SERS)應用 25
4.1.6 Cyclic voltammetry (CV) curve偵測過氧化氫之分析 28
4.1.7 Amperometric i-t curve(I-T)偵測過氧化氫之分析 30
4.1.8 結論 35
4.2 銀奈米線/透明導電玻璃之製備及應用於感測元件 36
4.2.1前言-樹枝狀奈米線/FTO基板 36
4.2.2 FE-SEM之形貌分析 37
4.2.3 XRD之結構分析 39
4.2.4 XPS鍵結分析 40
4.2.5 吸收光譜分析 41
4.2.6 Surface-enhanced Raman scattering (SERS)應用 42
4.2.6 Cyclic voltammetry (CV) curve偵測過氧化氫之分析 45
4.2.7 Amperometric i-t curve(I-T)偵測過氧化氫之分析 47
4.2.6 阻抗頻譜分析 51
4.2.7 結論 52
4.3局部表面電漿共振增益光電化學反應 54
4.3.1 前言–局部表面電漿共振增益光電化學反應 54
4.3.2 照光後的Cyclic voltammetry (CV) curve 55
4.3.3 照光後的Amperometric i-t curve(i-t)分析 56
4.3.4 照光後的阻抗頻譜分析 60
4.3.5 結論 61
第五章、結論 63
參考文獻 67
1. Raman, C.V., & Krishnan, K. S., A change of wave-length in light scattering. Nature, 1928. 121(3051): p. 619.
2. Fleischmann, M., Patrick J. Hendra, and A. James McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974. 26.5(163): p. 166.
3. Bourbonnais, R., Dónal Leech, and Michael G. Paice, Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochimica et Biophysica Acta (BBA)-General Subjects 1998. 1979.3(381): p. 390.
4. Yang, X., et al. , Hydrogen peroxide and glucose biosensor based on silver nanowires synthesized by polyol process. Analyst 2012. 137.18(4362): p. 4367.
5. Mandke, M.V., S.-H. Han, and H.M. Pathan, Growth of silver dendritic nanostructuresvia electrochemical route. CrystEngComm, 2012. 14(1): p. 86-89.
6. Lee, J., et al. "Plasmonic photoanodes for solar water splitting with visible light." Nano letters 12.9 (2012): 5014-5019., Plasmonic photoanodes for solar water splitting with visible light. Nano letters, 2012. 12.9(5014): p. 5019.
7. Hsu, C.-L., et al., Tunable UV-and Visible-Light Photoresponse Based on p-ZnO Nanostructures/n-ZnO/Glass Peppered with Au Nanoparticles. ACS Applied Materials & Interfaces, 2017. 9.17(14935): p. 14944.
8. Ding, S.Y., et al. "Surface‐Enhanced Raman Spectroscopy (SERS): General Introduction." Encyclopedia of Analytical Chemistry (2014). "Surface‐Enhanced Raman Spectroscopy (SERS): General Introduction. Encyclopedia of Analytical Chemistry, 2014.
9. Contreras-Cáceres, R., Benjamín Sierra-Martín, and Antonio Fernández-Barbero, Surface-enhanced Raman scattering sensors based on hybrid nanoparticles. Microsensors. InTech,, 2011.
10. Fateixa, S., Helena IS Nogueira, and Tito Trindade. , Hybrid nanostructures for SERS: materials development and chemical detection. Physical Chemistry Chemical Physics 2015. 17.33(21046): p. 21071.
11. Chen, J.H., et al. , Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon 2002. 40.8(1193): p. 1197.
12. Duan, L., et al., Hemoglobin protein hollow shells fabricated through covalent layer-by-layer techniqu. Biochemical and biophysical research communications, 2007. 354.2(357): p. 362.
13. 維基百科(銀).
14. Fang, J., et al. , Silver nanowires growth via branch fragmentation of electrochemically grown silver dendrites. Chemical Communications, 2009. 9(1130): p. 1132.
15. Jana, N.R., Latha Gearheart, and Catherine J. Murphy. , Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available: UV–VIS spectra of silver nanorods. Chemical Communications 2001. 7(617): p. 618.
16. Sun, Y., et al. , Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone. Chemistry of Materials, 2002. 14.11(4736): p. 4745.
17. Sun, Y., et al. ", Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidenc. Nano letters 2003. 3.7(955): p. 960.
18. Tompkins, H.H., Ed.(Academic, New York, 1972), pp." Organometallics 10 (1991): 652.
19. 維基百科(過氧化氫).
20. Johan, M.R., et al., Synthesis and growth mechanism of silver nanowires through different mediated agents (CuCl 2 and NaCl) polyol process. Journal of Nanomaterials 2014(54).
21. 黃宏勝, FE-SEM/CL/EBSD 分析技術簡介. 工業材料雜誌, 2003.
22. . Mahalingam, J.S.P.C., S. Rajendran, M. Jayachandran, M.J. Chockalingam, Galvanostatic deposition and characterization of cuprous oxide thin films. Journal of Crystal Growth, 2000. 216(304): p. 310.
23. 陳枝政, 電漿氧化製備銅氧化物及銅-二氧化矽復合材料之太陽能選擇性 吸收膜之性質研究. 台灣科技大學材料科技研究所碩士論文, 民國98年。.
24. K. Samanta, P.B., and R. S. Katiyar, J. Appl. Phys., 105, 113929(2009)
25. Stiles, P.L., et al., Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem (Palo Alto Calif), 2008. 1: p. 601-26.
26. Minami, T., Yuki Nishi, Toshihiro Miyata,and Jun-ichi Nomoto. Applied Physics Express, 2011. 4(062): p. 301.
27. Kurowska, E., et al., Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochimica Acta, 2013. 104: p. 439-447.
28. Wei, Y., et al. , Silver nanowires coated on cotton for flexible pressure sensors. Journal of Materials Chemistry 2016. 4.5(935): p. 943.
29. Chen, L., et al. "Single gold-nanoparticles-decorated silver/carbon nanowires as substrates for surface-enhanced Raman scattering detection." RSC Advances 3.48 (2013): 26102-26109.
30. L. Mao, P.O., K. Yamamoto, T. Kato, , Continuous on-line measurement of
cerebral hydrogen peroxide using enzyme-modified ring-disk plastic carbon
film electrode. Analytical Chemistry 2002. 74(3684).
31. K.-C. Lin, T.-H.T., S.-M. Chen, , Performing enzyme-free H2 O2 biosensor and
simultaneous determination for AA DA, and UA by MWCNT–PEDOT film. Biosensors and Bioelectronics 2010. 26(608).
32. B.N. Khlebtsov, Z.L., J. Ye, N.G. Khlebtsov, Au@ Ag core/shell cuboids and dumbbells: optical properties and SERS response. 167, 2015. 64-75.
33. N.L. Netzer, Z.T., B. Chen, C. Jiang,, Tailoring the SERS enhancement mechanisms of silver nanowire Langmuir–Blodgett films via galvanic replacement reaction,. J. Phys. Chem, 2013. 117(16187): p. 16194.
34. Y. Li, K.Z., J. Zhao, J. Ji, C. Ji, B. Liu, A three-dimensional silvernanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules,. Talanta 2016. 147(493-500).
35. Z. Wang, M.L., W. Wang, M. Fang, Q. Sun, C. Liu, Floating silver film: a flexible surface-enhanced Raman spectroscopy substrate for direct liquid phase detection at gas. liquid interfaces, Nano Res, 2016. 9( 1148–1158).
36. ] T.Y. Lu, Y.C.L., Y.T. Yen, C.C. Yu, H.L. Chen, Astronomical liquid mirrors as highly ultrasensitive, broadband-operational surface-enhanced Raman scattering-active substrates. J. Colloid Interface Sci, 2016. 466(80-90).
37. Y. Tian, F.W., Y. Liu, F. Pang, X. Zhang, Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection,Electrochim. Electrochim. Acta, 2014. 146(646-653).
38. A.M. Golsheikh, N.M.H., H.N. Lim, R. Zakaria, C.Y. Yin, One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection. Carbon, 2013. 62(405-412).
39. G.G. Kumar, K.J.B., K.S. Nahm, J.H. Yun, A facile one-pot green synthesis of reduced graphene oxide and its composites for non enzymatic hydrogen peroxide sensor applications. RSC Adv., 2014. 4(7944-7951).
40. L. Zhong, S.G., X. Fu, F. Li, D. Han, L. Guo, Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H2O2 biosensor,. Electrochim. Acta 2013. 89(22-238).
41. X. Qin, Y.L., W. Lu, G. Chang, A.M. Asiri, A.O. Al-Youbi, X. Sun, One-step synthesis of Ag nanoparticles-decorated reduced graphene oxide and their application for H2O2 detection,. Electrochim. Acta 2012. 79(46-51).
42. X. Qin, H.W., Z. Miao, J. Li, Q. Chen, A novel non-enzyme hydrogen peroxide sensor based on catalytic reduction property of silver nanowires,. Talanta 2015. 139(56-61).
43. X. Gao, L.J., Q. Wu, Z. Chen, X. Lin, A nonenzymatic hydrogen peroxide sensor based on silver nanowires and chitosan film. Electroanalysis 2012. 24(1771-1777).
44. Nia, P.M., Meng, W. P., & Alias, Y, Hydrogen peroxide sensor: Uniformly decorated silver nanoparticles on polypyrrole for wide detection range. Applied Surface Science, 2015. 357(1565-1572).
45. Wen, Y., et al., From DVD to dendritic nanostructure silver electrode for hydrogen peroxide detection. Biosens Bioelectron, 2013. 41: p. 857-61.
46. Cataldo, F., "HYDROGEN PEROXIDE PHOTOLYSIS WITH DIFFERENT UV LIGHT SOURCES INCLUDING A NEW UV-LED LIGHT SOURCE." Annals of West University of Timisoara. Series of Chemistry 2014. 23.2(99).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top