跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 08:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃弘緯
研究生(外文):Hong-Wei Huang
論文名稱:PTB7 加入倒置結構太陽能電池之研究
論文名稱(外文):The investigation of PTB7 in inverted polymer solar cells
指導教授:陳美杏陳美杏引用關係
指導教授(外文):Mei-Hsin Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:81
中文關鍵詞:倒置結構轉速
外文關鍵詞:inverted structureZnO(nano)PTB7:PCBMrotating speed
相關次數:
  • 被引用被引用:1
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是以倒置有機太陽能電池為主,元件結構為ITO/ZnO(nano)或AZO(2層)或SZO(2層)/PTB7:PCBM或P3HT:PCBM或P3HT:ICBA/MoO3/Ag,大致可分為三個部分探討。第一部份為確認ZnO(nano)藥品的穩定度,依據外觀、電流-電壓曲線、穿透率、霧度等量測為判定標準,找出最佳且穩定的狀態,其中透亮狀態時為最佳。
  第二部分為ZnO(nano)、AZO及SZO三者比較其表面形貌、元件效率、薄膜穿透率、主動層吸收、元件效率、暗電流、生命週期。可發現ZnO(nano)雖然粗糙度高、穿透率略低但是其效率仍然能高於另外兩者,判斷應為其電子傳導能力十分優秀才有此結果。
最後第三部分,則是以討論主動層變化為主,以表面形貌、J-V圖、暗電流、外部量子效率(EQE),去探討主動層的優劣,之後發現PTB7:PCBM最好。最後希望找出PTB7:PCBM的最佳條件,再以轉速變化控制變因去找到PTB7:PCBM於4000rpm 60秒時有最佳效率7.59%且填充因子66,優於其它的轉速條件。
In this study, we focus on the inverted organic solar cells. The structure of the inverted device is based on ITO//ZnO nanoparticle or Al-doped ZnO (AZO) or Sn-doped ZnO (SZO)/ PTB7:PCBM or P3HT:PCBM or P3HT:ICBA/MoO3/Ag. The content is divided into three parts. First, according to the measurements of surface, J-V curve, thin films transmission, haze to find out ZnO nanoparticle the most stable state, and the best state of ZnO (nano) is clear condition.
  Second part is the comparisons of surface morphology, devices characteristics, thin films transmission, active layer absorption, dark current and lifetime. It can be found that ZnO (nano) has a high roughness and a low transmittance, but its efficiency is still higher than the other two. We thought that because of its excellent electronic conductivity is the result of this.
  Finally, the third part is to discuss the different of active layers to surface morphology, J-V diagram, dark current, external quantum efficiency (EQE), to explore the advantage of the active layer, and then found that PTB7: PCBM is the best active layer. At last, we hope to find the best condition of PTB7: PCBM, and then change rotating speed to find PTB7: PCBM at 4000rpm 60 seconds with the best efficiency of 7.59% and fill factor 66, better than others rotating speed conditions.
目錄
Abstract I
摘要 III
圖目錄 VII
表目錄 IX
第一章 序論 1
1.1 前言 1
1.2 太陽能電池 6
1.3 研究動機 15
1.4 文獻探討 17
第二章 理論基礎與文獻回顧 21
2.1 太陽能電池基本原理與參數 21
2.2 有機太陽能電池回顧 26
2.2.1 單層結構 26
2.2.2 雙層結構 27
2.2.3 混合異質接面結構 28
2.2.4 倒置有機太陽能電池 30
第三章 實驗流程與材料介紹 31
3.1 材料介紹 31
3.1.1 ITO導電玻璃 31
3.1.2 AZO/SZO/ZnO nanoparticles電子傳輸層 31
3.1.3 P3HT:PCBM及PTB7:PCBM及P3HT:ICBA主動層 33
3.1.4 MoO3電洞傳輸層 35
3.1.5 溶劑介紹 35
3.2倒置有機太陽能電池製作流程 36
3.2.1 ITO玻璃基板備置、清潔 36
3.2.2 AZO/SZO/ZnO(nano)電子傳輸層塗佈 36
3.2.3 PTB7:PCBM及P3HT:ICBA及PTB7:PCBM主動層塗佈 37
3.2.4 前退火處理 37
3.2.5 MoO3電洞傳輸層與Ag陰極蒸鍍 37
第四章 設備介紹 39
4.1 電子天平 39
4.2 超音波震洗機 39
4.3 烘箱熱風循環/程控熱風循環烘箱 40
4.4 紫外光臭氧清洗機(UV-Ozone) 40
4.5 加熱攪拌器 41
4.6 旋轉塗佈機 41
4.7 手套箱 42
4.8 熱蒸鍍機 43
4.9 I-V曲線量測系統 45
4.10 EQE量測系統 46
4.11 光譜儀量測系統 47
4.12 AFM原子力顯微鏡 48
第五章 結果與討論 51
5.1 電子傳輸層ZnO(nano)分析與特性 51
5.1.1 ZnO(nano)配置完後放置時間之狀態與穿透霧度分析 52
5.1.2 ZnO(nano)狀態之元件效率比較 55
5.2 電子傳輸層ZnO(nano)與SZO與AZO特性及效率比較分析 57
5.2.1 ZnO(nano)與其它電子傳輸層穿透率比較 58
5.2.2 ZnO(nano)與其它電子傳輸層薄膜形貌分析 60
5.2.3 主動層在ZnO(nano)與其它電子傳輸層的吸收分析 61
5.2.4 ZnO(nano)與其它電子傳輸層的元件效率分析 62
5.2.5 ZnO(nano)與其它電子傳輸層的暗電流及生命週期分析 64
5.3 PTB7:PCBM元件製程及分析 66
5.3.1 PTB7:PCBM 表面薄膜及截面分析 67
5.3.2 PTB7:PCBM與P3HT:PCBM與P3HT:ICBA之比較 69
5.3.3 PTB7:PCBM轉速比較 72
第六章 結論與未來研究方向 75
6.1 結論 75
6.2 未來研究方向 76
論文修改清單 77
參考文獻 79
[1]維基百科:化石燃料
[2] Energy and CO2 emissions in the OECD With detailed data up to 2015
[3]維基百科:核電廠
[4]維基百科:可再生能源
[5]http://citylightsnews.blogspot.tw/2015/10/
[6] L. Łukasiak and A. Jakubowski "History of Semiconductors", Journal of telecommunications and information technology 1 (2010) 3.
[7] D. M. Chapin, C. S. Fuller, and G. L. Pearson. "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power", Journal of Applied Physics 25 (1954) 676.
[8] D.E. Carlson and C.R. Wronski, Appl. Phys. Lett. 28 (1976) 671
[9] H. Shirakawa;E. J. Louis;A. G. MacDiarmid;C. K. Chiang;A. J. Heeger"Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x",The Journal of Chemical Society, Chemical Communications 16 (1977) 578.
[10] The Institute of Energy Conversion: The First Twenty-five Years: 1972-1997 http://www.udel.edu/iec/history.html
[11] The Histroy of Solar https://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf
[12] Q. Zhang, C. S. Dandeneau, S. Candelaria, D. Liu, B. B. Garcia, X. Zhou, Y.H. Jeong, and G. Cao, "Effects of Lithium Ions on Dye-Sensitized ZnO Aggregate Solar Cells", Chem. Mater. 22 (2010) 2427.
[13] A Kojima, K Teshima, Y Shirai, and T Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells", J. AM. CHEM. SOC. 131 (2009) 6050.
[14] H. S. Kim,C. R. Lee,J. H. Im,K. B. Lee,T. Moehl,A. Marchioro,S. J. Moon,R. H. Baker,J. H. Yum,J. E. Moser,M. Grätzel,and N. G. Park "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%", Scientific Reports 2 (2012) 591 .
[15] http://www.nrel.gov/ncpv
[16] http://web2.yzu.edu.tw/e_news/585/10_new01.html
[17] https://commons.wikimedia.org/wiki/File:Best_Research-Cell_Efficiencies.png
[18] O’regan, B., & Grfitzeli, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized. nature, 353(6346), 737-740.
[19] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop
Prog. Photovolt: Res. Appl. 23 (2015) 1.
[20]http://gcell.com/dye-sensitized-solar-cells/advantages-of-dscc/efficiency
[21]https://ir.nctu.edu.tw/bitstream/11536/47531/1/450601.pdf
[22]https://www.ctimes.com.tw/DispArt/tw/1212071253FA.shtml
[23]http://www.teema.org.tw/exhibition-detail.aspx?infoid=8248
[24] Razza, S., Castro-Hermosa, S., Di Carlo, A., & Brown, T. M. (2016). Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Materials, 4(9), 091508.
[25] http://www.sigmaaldrich.com/
[26] Oseni, S. O., & Mola, G. T. (2017). Properties of functional layers in inverted thin film organic solar cells. Solar Energy Materials and Solar Cells, 160, 241-256.
[27] Liu, D., & Kelly, T. L. (2014). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature photonics, 8(2), 133-138.
[28] Nian, L., Zhang, W., Zhu, N., Liu, L., Xie, Z., Wu, H., ... & Ma, Y. (2015). Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. Journal of the American Chemical Society, 137(22), 6995-6998.
[29]Min, X., Jiang, F., Qin, F., Li, Z., Tong, J., Xiong, S., ... & Zhou, Y. (2014). Polyethylenimine aqueous solution: a low-cost and environmentally friendly formulation to produce low-work-function electrodes for efficient easy-to-fabricate organic solar cells. ACS applied materials & interfaces, 6(24), 22628-22633.
[30] http://web.it.nctu.edu.tw/~jtchen/research/c-research-opv.htm
[31] H. C. Cha , Y. C. Huang , F. H. Hsu,C. M. Chuang,D. H. Lu, C. W. Chou,C. Y. Chen,C. S. Tsao "Performance improvement of large-area roll-to-roll slot-die-coated inverted polymer solar cell by tailoring electron transport layer", Solar Energy Materials & Solar Cells 130 (2014) 191.
[32] H. Kallmann, M. Pope, “Photovoltaic Effect in Organic Crystals”, J. Chem. Phys. 30 (1958) 585.
[33] C. W. Tang, “Two Layer Organic Photovoltaic Cell”, Appl. Phy. Lett. 48 (1986) 183.
[34] J. J. M. Halls, K. Pichler, R. H. Friend, “ Exciton Diffusion and Dissociation in a Poly(p-phenylenevinylene)/ C60 Heterojunction Photovoltaic Cell”, Appl. Phys. Lett. 68 (1996) 3120.
[35] P. Peumans and S. R. Forrest, “Very-High-Efficiency Double-Hetero Structure Copper Phthalocyanine/C60 Photovoltaic Cells”, Appl. Phys. Lett. 79 (2001) 126.
[36] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “PhotoinducedElectron Transfer from a Conducting Polymer to Buckminsterfullerene”, Science 258 (1992) 1474.
[37] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G.Stucky, F. Wudl, “Semiconducting Polymer‐Buckminster Fullerene Heterojunctions: Diodes, Photodiodes, and Photovoltaic Cells” , Appl. Phys. Lett. 62 (1993) 585.
[38] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science 270 (1995) 1789.
[39] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% Efficient Organic Plastic Solar Cell”, Appl. Phys. Lett. 78 (2001) 841.
[40] G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of Annealing Effects and Film Thickness Dependence of Polymer Solar Cells based on Poly(3-hexylthiophene) ”, J. Appl. Phys. 98 (2005) 043704.
[41] L. J. A. Koster, V. D. Mihailetchi, and P. W. M. Blom, “Ultimate
Efficiency of Polymer/Fullerene Bulkheterojunction Solar Cells”, Appl. Phys. Lett. 88 (2006) 093511.
[42] C. M. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf ,A. J. Heeger, andJ. C. Brabec, “Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10% Energy-Conversion Efficiency”, Adv. Mater. 18 (2006) 789.
[43]http://www.sigmaaldrich.com/catalog/product/aldrich/423475?lang=en®ion=TW
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top