跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳啓仲
研究生(外文):Chi-Chunh Wu
論文名稱:微透鏡光學系統分析
論文名稱(外文):The Analysis of Microlens Array in Optical System
指導教授:莊沁融
指導教授(外文):Chin-Jung Chuang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:82
中文關鍵詞:光學追跡影像品質有機發光二極體微透鏡陣列
外文關鍵詞:Ray tracingImage qualityOLEDMicrolens array
相關次數:
  • 被引用被引用:0
  • 點閱點閱:413
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
顯示器已經是現代人不可或缺的一項科技,應用層面之廣泛是眾所皆知,而歷代的顯示器也是各有優缺點,OLED的崛起勢必帶來顯示器產業的衝擊。
在論文的第一章,我們探討OLED的歷史,利用OLED主要就是希望將他推為下一世代的顯示器面板,引此也順帶討論歷代顯示器的基礎工作原理以及優缺點,同時加上OLED有別於以往的特性,加上產品現在對於彎曲性的需求漸漸提高,更是OLED發展的目標。第二章探討光學基礎相關原理,一個顯示器必須是由光的投射所組成,幾何光學中基本的思涅爾定律,OLED在自發光的情況下並非百分百出光,由於基板以及折射率的不同,讓光線在經過多層膜結構的時,逐漸地被反射甚至內全反射消耗掉,因此發光效率並非百分之百,也因為如此,使得我們需要增加他的出光效率,接著回顧在OLED上截至目前為止所使用減低光所耗的技術,外部貼上微透鏡結構則是本研究所選擇的方式。第三章詳載在模擬上我們選用Zemax的序列追跡方式,在序列光線追跡模式下,盡可能拉回因為全內反射所被損耗的光束,以增加出光效率,使用光學分析的方式量測出光效率,以及在近一步對於OLED以及加上微透鏡(MLA)的影像品質分析(MSE、PSNE、Image Quality,帶入CIE檢視在貼MLA前後的對比,增加顯示器的色域,使用影像檢驗OLED面板發光範圍的面積大小是否因為貼上MLA而有所影響。第四章綜合前面的分析,在六角結構上所取出的發光面積是遠比正方結構多出許多,和原始影像比較之下範圍多出759%之多,在影像分析上最高的品質也能達到0.949。
Display device is the most popular technology in 21th century. Now, the organic light-emitting diode (OLEDs) is discussed developmental in ten years. Even the OLED is better than LED LCD, we still rise its ability of brightness and contrast. Our obstacle is light-wave guiding in the OLEDs. Although an OLED requires no backlight and thus consumes less power than a LED liquid crystal display (LCD), effective power management is necessary, because even a relatively efficient display is likely to be the major power consumer in a mobile device, possibly accounting for as much as two-thirds of the power used by the device. Therefore, OLED is our source light on this research for improving the brightness.
Although the fabrication develops in many years, the simulation aims to save the cost of produce MAL. The Zemax is popular optical simulation software. The optical system sets up a microlens and analyze with ray fan, spot diagram, encircled energy. To extract the light from the OLEDs substrate, the TIR is an important optical phenomenon. There are 7 filed angle to adjust what parameter is better. According to the analysis of visible wavelength spectrum, OM image, CIE, many optical characteristic is observed in the chapter 4. In image processing, the best arrangement is HS MLA because that its best IQ is 0.905 and PSNR is 17.555. Therefore, the best shape is hexagonal MLA and the best gap size is 2.8 micrometer.
Acknowledgements i
摘要 iii
Abstract v
Table of Contents vii
List of Tables xi
List of Figures xii
Chapter1. Background and Introduction 1
1.1 Preface 1
1.2 The problem of technology in OLED 2
1.2.1 Disadvantages 2
1.2.2 Advantages 4
1.3 History of Displays 5
1.4 Organic light of LED 9
1.5 The driver of OLED 14
1.6 The Image Quality Method 16
1.7 Summary 17
Chapter2. Optical principles and Experiments design 18
2.1 Optical Function and Ray Tracing 18
2.1.1 Snell’s Law 19
2.1.2 The Ray Transfer Matrix 22
2.2 The Image Quality Analysis 25
2.3 The light loss factor in OLEDs 27
2.4 The Fabrication Method of Light Extraction 30
2.4.1 Microlens arrays 31
2.4.2 Internal Light Extraction 34
2.5 Summary 36
Chapter3. The optical tracing of Simulation on Microlens array 37
3.1 The ray tracing parameter 37
3.2 The Simulation of Single Microlens 38
3.3 The Simulation of Optical Analysis 41
Chapter4. Optic Analysis on OLED and Result 47
4.1 Surface Analysis 47
4.2 Optic Analysis 51
4.2.1 Optic Microscope 51
4.2.2 Visible Light Spectrum 58
4.2.3 CIE1931 Color Space 62
4.3 Image Processing 69
Chapter5. Conclusion and Future Research 75
Reference 77
1. Joseph, S. and S. Ruth, Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview. Journal of Physics D: Applied Physics, 2008. 41(13): p. 133001.
2. Park, M. and M. Song, Saving Power in Video Playback on OLED Displaysby Acceptable Changes to Perceived Brightness. Journal of Display Technology, 2016. 12(5): p. 483-490.
3. Lee, J.Y., Effect of doping profile on the lifetime of green phosphorescent organic light-emitting diodes. Applied Physics Letters, 2006. 89(15): p. 153503.
4. Lee, D.H., et al., Improved efficiency and lifetime for green phosphorescent organic light-emitting diodes using charge control layer. Displays, 2014. 35(2): p. 79-83.
5. Tsang, D.P.-K., T. Matsushima, and C. Adachi, Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers. 2016. 6: p. 22463.
6. Tang, C.W., Organic electroluminescent diodes. Appl.Phys.Lett., 1987. 51: p. 3.
7. Cajochen, C., et al., Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. Journal of Applied Physiology, 2011. 110(5): p. 1432.
8. Hirano, T., et al., 53.2: Distinguished Paper: Novel Laser Transfer Technology for Manufacturing Large-Sized OLED Displays. SID Symposium Digest of Technical Papers, 2007. 38(1): p. 1592-1595.
9. Chen, Y.-M., et al., Quasi-static capacitance–voltage characterizations of carrier accumulation and depletion phenomena in pentacene thin film transistors. Solid-State Electronics, 2008. 52(2): p. 269-274.
10. Lee, J.H., et al., Efficiency improvement and image quality of organic light-emitting display by attaching cylindrical microlens arrays. Opt Express, 2008. 16(26): p. 21184-90.
11. Lin, C.-H., et al., Suppressing series resistance in organic solar cells by oxygen plasma treatment. Applied Physics Letters, 2008. 92(23): p. 233302.
12. Wang, D., et al., Highly efficient green organic light-emitting diodes from single exciplex emission. Applied Physics Letters, 2008. 92(5): p. 053304.
13. Mitsui, C., et al., Carbazolyl Benzo[1,2-b:4,5-b′]difuran: An Ambipolar Host Material for Full-Color Organic Light-Emitting Diodes. Chemistry – An Asian Journal, 2012. 7(6): p. 1443-1450.
14. Geffroy, B., P. le Roy, and C. Prat, Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polymer International, 2006. 55(6): p. 572-582.
15. Sezgin, M. and B.l. Sankur, Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 2004. 13(1): p. 146-168.
16. Roychoudhuri, C. and E. Society of Photo-optical Instrumentation, Fundamentals of photonics. 2008.
17. Nussbaum, A. Modernizing the teaching of advanced geometric optics. 1992.
18. Kogelnik, H. and T. Li, Laser beams and resonators. Appl Opt, 1966. 5(10): p. 1550-67.
19. Moreno, I., et al., Jones matrix treatment for optical Fourier processors with structured polarization. Optics Express, 2011. 19(5): p. 4583-4594.
20. Zhou, W. and A.C. Bovik, A universal image quality index. IEEE Signal Processing Letters, 2002. 9(3): p. 81-84.
21. Liu, S.W., et al., An efficient non-Lambertian organic light-emitting diode using imprinted submicron-size zinc oxide pillar arrays. Applied Physics Letters, 2013. 102(5): p. 053305.
22. Bulović, V., et al., Weak microcavity effects in organic light-emitting devices. Physical Review B, 1998. 58(7): p. 3730-3740.
23. Yue, Q., et al., Enhancing the Out-Coupling Efficiency of Organic Light-Emitting Diodes Using Two-Dimensional Periodic Nanostructures. Advances in Materials Science and Engineering, 2012. 2012: p. 9.
24. Wu, W.-T., et al., Optical effects of NiOx interlayer for OLEDs with AZO embedded anodes. Materials Chemistry and Physics, 2016. 183: p. 405-409.
25. Li, J.-S., et al., Study on the optical performance of thin-film light-emitting diodes using fractal micro-roughness surface model. Applied Surface Science, 2017. 410: p. 60-69.
26. Möller, S. and S.R. Forrest, Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. Journal of Applied Physics, 2002. 91(5): p. 3324-3327.
27. Myers, J.D., et al., A universal optical approach to enhancing efficiency of organic-based photovoltaic devices. Energy & Environmental Science, 2012. 5(5): p. 6900-6904.
28. Joo-Hyung, L., et al., A simple and effective fabrication method for various 3D microstructures: backside 3D diffuser lithography. Journal of Micromechanics and Microengineering, 2008. 18(12): p. 125015.
29. Jucius, D., et al., Effect of fused silica surface wettability on thermal reflow of polymer microlens arrays. Microsystem Technologies, 2017. 23(6): p. 2193-2206.
30. Tsou, C. and C. Lin, A New Method for Microlens Fabrication by a Heating Encapsulated Air Process. IEEE Photonics Technology Letters, 2006. 18(23): p. 2490-2492.
31. Lee, K., et al., A Light Scattering Layer for Internal Light Extraction of Organic Light-Emitting Diodes Based on Silver Nanowires. ACS Applied Materials & Interfaces, 2016. 8(27): p. 17409-17415.
32. Vicente, C., et al., Enhancement of organic light-emitting diode light extraction by texturing PDMS layers. Optical Engineering, 2014. 53(10): p. 107111-107111.
33. Fu-Yun, Z., et al., 3D nanostructure reconstruction based on the SEM imaging principle, and applications. Nanotechnology, 2014. 25(18): p. 185705.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top