|
1. Joseph, S. and S. Ruth, Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview. Journal of Physics D: Applied Physics, 2008. 41(13): p. 133001. 2. Park, M. and M. Song, Saving Power in Video Playback on OLED Displaysby Acceptable Changes to Perceived Brightness. Journal of Display Technology, 2016. 12(5): p. 483-490. 3. Lee, J.Y., Effect of doping profile on the lifetime of green phosphorescent organic light-emitting diodes. Applied Physics Letters, 2006. 89(15): p. 153503. 4. Lee, D.H., et al., Improved efficiency and lifetime for green phosphorescent organic light-emitting diodes using charge control layer. Displays, 2014. 35(2): p. 79-83. 5. Tsang, D.P.-K., T. Matsushima, and C. Adachi, Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers. 2016. 6: p. 22463. 6. Tang, C.W., Organic electroluminescent diodes. Appl.Phys.Lett., 1987. 51: p. 3. 7. Cajochen, C., et al., Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. Journal of Applied Physiology, 2011. 110(5): p. 1432. 8. Hirano, T., et al., 53.2: Distinguished Paper: Novel Laser Transfer Technology for Manufacturing Large-Sized OLED Displays. SID Symposium Digest of Technical Papers, 2007. 38(1): p. 1592-1595. 9. Chen, Y.-M., et al., Quasi-static capacitance–voltage characterizations of carrier accumulation and depletion phenomena in pentacene thin film transistors. Solid-State Electronics, 2008. 52(2): p. 269-274. 10. Lee, J.H., et al., Efficiency improvement and image quality of organic light-emitting display by attaching cylindrical microlens arrays. Opt Express, 2008. 16(26): p. 21184-90. 11. Lin, C.-H., et al., Suppressing series resistance in organic solar cells by oxygen plasma treatment. Applied Physics Letters, 2008. 92(23): p. 233302. 12. Wang, D., et al., Highly efficient green organic light-emitting diodes from single exciplex emission. Applied Physics Letters, 2008. 92(5): p. 053304. 13. Mitsui, C., et al., Carbazolyl Benzo[1,2-b:4,5-b′]difuran: An Ambipolar Host Material for Full-Color Organic Light-Emitting Diodes. Chemistry – An Asian Journal, 2012. 7(6): p. 1443-1450. 14. Geffroy, B., P. le Roy, and C. Prat, Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polymer International, 2006. 55(6): p. 572-582. 15. Sezgin, M. and B.l. Sankur, Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 2004. 13(1): p. 146-168. 16. Roychoudhuri, C. and E. Society of Photo-optical Instrumentation, Fundamentals of photonics. 2008. 17. Nussbaum, A. Modernizing the teaching of advanced geometric optics. 1992. 18. Kogelnik, H. and T. Li, Laser beams and resonators. Appl Opt, 1966. 5(10): p. 1550-67. 19. Moreno, I., et al., Jones matrix treatment for optical Fourier processors with structured polarization. Optics Express, 2011. 19(5): p. 4583-4594. 20. Zhou, W. and A.C. Bovik, A universal image quality index. IEEE Signal Processing Letters, 2002. 9(3): p. 81-84. 21. Liu, S.W., et al., An efficient non-Lambertian organic light-emitting diode using imprinted submicron-size zinc oxide pillar arrays. Applied Physics Letters, 2013. 102(5): p. 053305. 22. Bulović, V., et al., Weak microcavity effects in organic light-emitting devices. Physical Review B, 1998. 58(7): p. 3730-3740. 23. Yue, Q., et al., Enhancing the Out-Coupling Efficiency of Organic Light-Emitting Diodes Using Two-Dimensional Periodic Nanostructures. Advances in Materials Science and Engineering, 2012. 2012: p. 9. 24. Wu, W.-T., et al., Optical effects of NiOx interlayer for OLEDs with AZO embedded anodes. Materials Chemistry and Physics, 2016. 183: p. 405-409. 25. Li, J.-S., et al., Study on the optical performance of thin-film light-emitting diodes using fractal micro-roughness surface model. Applied Surface Science, 2017. 410: p. 60-69. 26. Möller, S. and S.R. Forrest, Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. Journal of Applied Physics, 2002. 91(5): p. 3324-3327. 27. Myers, J.D., et al., A universal optical approach to enhancing efficiency of organic-based photovoltaic devices. Energy & Environmental Science, 2012. 5(5): p. 6900-6904. 28. Joo-Hyung, L., et al., A simple and effective fabrication method for various 3D microstructures: backside 3D diffuser lithography. Journal of Micromechanics and Microengineering, 2008. 18(12): p. 125015. 29. Jucius, D., et al., Effect of fused silica surface wettability on thermal reflow of polymer microlens arrays. Microsystem Technologies, 2017. 23(6): p. 2193-2206. 30. Tsou, C. and C. Lin, A New Method for Microlens Fabrication by a Heating Encapsulated Air Process. IEEE Photonics Technology Letters, 2006. 18(23): p. 2490-2492. 31. Lee, K., et al., A Light Scattering Layer for Internal Light Extraction of Organic Light-Emitting Diodes Based on Silver Nanowires. ACS Applied Materials & Interfaces, 2016. 8(27): p. 17409-17415. 32. Vicente, C., et al., Enhancement of organic light-emitting diode light extraction by texturing PDMS layers. Optical Engineering, 2014. 53(10): p. 107111-107111. 33. Fu-Yun, Z., et al., 3D nanostructure reconstruction based on the SEM imaging principle, and applications. Nanotechnology, 2014. 25(18): p. 185705.
|