跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 02:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃鈺傑
研究生(外文):Yu-Jie Huang
論文名稱:氧化石墨烯於PN單晶矽太陽能電池鈍化特性研究
論文名稱(外文):Passivation characteristics of graphene oxide on single crystal silicon soalr cell
指導教授:林楚軒
指導教授(外文):Chu-syuan Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:68
中文關鍵詞:氧化石墨烯單晶矽太陽能電池鈍化層雙面太陽能電池
外文關鍵詞:graphene oxidesingle-crystal solar cellpassivation layerbifacial solar cell
相關次數:
  • 被引用被引用:1
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文將氧化石墨烯應用於單晶矽PN太陽能電池上,希望可以利用氧化石墨烯帶有負電荷的特性作為鈍化層以降低表面復合率以提升效率。

首先我們仿照前人經驗直接將氧化石墨烯塗佈於P型矽來減少少數載子(電子)的表面復合機率,但在多次實驗後發現短路電流有明顯下降的趨勢而導致效率無法提升。為了找出原因,我們先是確認氧化石墨烯是否會阻礙鋁背電場的形成,利用鋁背電場層與原本P型矽層的被蝕刻速率的差異,我們可以用掃描式電子顯微鏡看到背電場的深度,無論是否有加入氧化石墨烯的樣品我們都可以看到完整的鋁背電場層。

隨後我們將目標轉向了製程溫度對氧化石墨烯的影響,我們利用Sinton WCT-120來進行了不同製程溫度或是不同氣體環境的少數載子生命週期的量測,發現氧化石墨烯的鈍化能力會隨著製程溫度的提高而有著顯著的下降,而氣體環境雖說有著一定的影響但並無溫度所造成的退化來的明顯。

因此,為了避免溫度對氧化石墨烯鈍化能力造成下降,我們採用了雙面太陽能電池的結構,使得氧化石墨烯得以在最外層,而避免經過高溫的熱退火製程,最後藉由塗佈方式的改良,我們只要能避免氧化石墨烯覆蓋導電極,就可以避免電流的下降而得到太陽能電池轉換效率的提升。
In this study, we have used graphene oxide, which has the characteristics of negative charge, to apply on single-crystal silicon PN solar cells. It was expected that the graphene oxide could be use as passivation layer to reduce surface recombination rate and improve the efficiency of solar cells.

We have coated graphene oxide on the p-type silicon to reduce the surface recombination rate of minority carriers (electrons). We found that the short-current current significantly decreases and could not lead to efficiency improvement. In order to find out the reason, we first confirm whether the graphene oxide will impede the formation of aluminum back surface field. Because of different etching rates of aluminum back surface field layer and original P-type silicon layer, we can use scanning electron microscopy to see the back electric field. Both the sample coated or not coated by graphene oxide showed obvious aluminum back electric field layer.

We then focused on the effects of the process temperature on graphene oxide. We used Sinton WCT-120 to measure the minority carrier lifetime with different process temperatures or different ambience. It was found that the passivation ability of graphene oxide will degrade with the temperature rising, while the ambience has the certain impact but not as obvious as the temperature.

In order to avoid decreasing the passivation ability of graphene oxide, we have adopted the structure of bifacial solar cells, so that the graphene oxide can act as the outermost layer to prevent the graphene oxide suffering from high temperature treatment. With the improvement of the coating method, we can avoid the precipitation of graphene oxide on busbar and the current can flow well. Finally, we can improve the conversion efficiency.
致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1.1前言 1
1.2研究動機 3
1.3論文架構 4
第二章 原理及文獻探討 5
2.1 太陽能電池運作原理 5
2.1.1 太陽能電池結構 5
2.1.2 光伏效應 6
2.1.3 太陽能電池效率相關參數 8
2.2 太陽能電池的鈍化機制 10
2.2.1 載子復合機制 10
2.2.2鋁背電場(Back Surface Field)的形成 12
2.2.3 鈍化層(Passivation Layer)作用 13
2.3 氧化石墨烯特性介紹 15
2.3.1氧化石墨烯材料特性 15
2.3.2氧化石墨烯製備原理 16
2.3.3氧化層電荷 17
第三章 氧化石墨烯太陽能電池製作 21
3.1 太陽能電池實作 21
3.1.1 實驗流程 22
3.1.2 實驗結果與討論 24
3.2 確認鋁背電場的形成 26
3.2.1 實驗流程 26
3.2.2 熱退火參數對鋁背電場的影響 27
第四章 氧化石墨烯高溫鈍化特性衰退 33
4.1不同溫度氧化石墨烯少數載子生命週期研究 33
4.1.1 實驗流程 33
4.1.2 少數載子生命週期量測儀量測流程 35
4.1.3 實驗結果與討論 41
4.2有氧與無氧環境下氧化石墨烯少數載子生命週期量測 43
4.2.1 兩段式變換氣體流程 43
4.2.2 實驗結果與討論 45
第五章 非高溫製程氧化石墨烯於單晶矽太陽能電池應用 49
5.1 非高溫製程氧化石墨烯太陽能電池製作 49
5.1.1 非高溫製程氧化石墨烯太陽能電池結構 49
5.1.2 實驗流程 51
5.2 實驗結果與討論 53
5.2.1 不同滴定方式氧化石墨烯雙面太陽能電池效率 53
5.2.2 噴槍法塗佈氧化石墨烯雙面太陽能電池效率 57
第六章 總結和未來方向 61
6.1 總結 61
6.2 未來方向 63
參考文獻 65
[1-1] 台電系統歷年發購電量, http://www.taipower.com.tw/content/new_info/new_info-c37.aspx
[1-2] Solar power wikipedia,
https://en.wikipedia.org/wiki/Solar_power
[1-3] File:Best Research-Cell Efficiencies, https://commons.wikimedia.org/wiki/File:Best_Research-Cell_Efficiencies.png
[1-4] Graphite oxide wikipedia, https://en.wikipedia.org/wiki/Graphite_oxide
[1-5] Arafat Y, Mohammedy F M, Hassan M M S. Optical and other measurement techniques of carrier lifetime in semiconductors[J]. Int. J. Optoelectron. Eng, 2012, 2(2): 5-11.
[1-6] Schmidt J, Werner F, Veith B, et al. Advances in the surface passivation of silicon solar cells[J]. Energy Procedia, 2012, 15: 30-39.
[1-7] Hsu W T, Tsai Z S, Chen L C, et al. Passivation ability of graphene oxide demonstrated by two-different-metal solar cells[J]. Nanoscale research letters, 2014, 9(1): 696.
[2-1] PVCDROM, http://pveducation.org/pvcdrom/solar-cell-structure
[2-2] Diode wikipedia, https://en.wikipedia.org/wiki/Diode
[2-3] Narasimha S, Rohatgi A, Weeber A W. An optimized rapid aluminum back surface field technique for silicon solar cells[J]. IEEE Transactions on Electron Devices, 1999, 46(7): 1363-1370.
[2-4] Menous I, Mahiou L, Tadjine R, et al. Silicon nitride film for solar cells[J]. Renewable Energy, 2008, 33(10): 2289-2293.

[2-5] 矽晶太陽能電池抗反射層鍍膜技術與設備探討 機械工業雜誌, http://www.automan.tw/mag_images/book/290-06.pdf
[2-6] Graphene wikipedia,https://en.wikipedia.org/wiki/Graphene
[2-7] What’s Graphene, and How Will It Transform Medical Technology? https://www.scienceabc.com/innovation/whats-graphene-and-how-will-it-transform-medical-technology.html
[2-8] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. carbon, 2007, 45(7): 1558-1565.
[2-9] Brodie B C. On the atomic weight of graphite[J]. Philosophical Transactions of the Royal Society of London, 1859, 149: 249-259.
[2-10] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
[2-11] Dong X, Su C Y, Zhang W, et al. Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties[J]. Physical Chemistry Chemical Physics, 2010, 12(9): 2164-2169.
[2-12] Hu C. Modern semiconductor devices for integrated circuits[M]. Prentice Hall, 2010.
[2-13] Gupta S K, Singh J, Akhtar J. Materials and processing for gate dielectrics on silicon carbide (SiC) surface[J]. Physics and Technology of Silicon Carbide Devices, 2013: 207-34.
[2-14] 叶良修. 半导体物理学[M]. 高等教育出版社, 1983.
[3-1] Popovich V A, Janssen M, Richardson I M, et al. Microstructure and mechanical properties of aluminum back contact layers[J]. Solar energy materials and solar cells, 2011, 95(1): 93-96.
[3-2] Cui J, Colwell J, Li Z, et al. Localised back surface field formation via different dielectric patterning approaches[C]//The 50th Annual Australian Solar Council's Conference. Swinburne University of Technology, Melbourne. 2012.
[4-1] Cho Y J, Song H E, Chang H S. Relation of lifetime to surface passivation for atomic-layer-deposited Al 2 O 3 on crystalline silicon solar cell[J]. Materials Science and Engineering: B, 2015, 193: 160-163.
[4-2] Jirak J E. Enhancement of minority carrier lifetime in low quality silicon by ion implantation of arsenic and antimony[M]. Iowa State University, 2009.
[4-3] Venugopal G, Krishnamoorthy K, Kim S J. An investigation on high-temperature electrical transport properties of graphene-oxide nano-thinfilms[J]. Applied Surface Science, 2013, 280: 903-908.
[4-4] Fan Y, Han P, Liang P, et al. Investigation of the forming process and characteristics of Al-BSF in silicon solar cells[C]//Materials for Renewable Energy and Environment (ICMREE), 2013 International Conference on. IEEE, 2014, 1: 57-61.
[4-5] Akatsuka M, Okui M, Morimoto N, et al. Effect of rapid thermal annealing on oxygen precipitation behavior in silicon wafers[J]. Japanese Journal of Applied Physics, 2001, 40(5R): 3055.
[5-1] Bifacial solar cells – the two sides of the story, https://www.solarchoice.net.au/blog/news/bifacial-solar-cells-the-two-sides-of-the-story-050515
[5-2] Sepeai S, Cheow S L, Sulaiman M Y, et al. Fabrication and characterization of Al-BSF bifacial solar cell[C]//Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th. IEEE, 2013: 2664-2668.

[5-3] Jung I, Vaupel M, Pelton M, et al. Characterization of thermally reduced graphene oxide by imaging ellipsometry[J]. The Journal of Physical Chemistry C, 2008, 112(23): 8499-8506.
[5-4] 【奈米材料】超低折射率材料–CASE報科學, http://case.ntu.edu.tw/blog/?p=23020
[6-1] Schneiderlöchner E, Preu R, Lüdemann R, et al. Laser‐fired rear contacts for crystalline silicon solar cells[J]. Progress in Photovoltaics: Research and Applications, 2002, 10(1): 29-34.
[6-2] Bullock J, Cuevas A, Allen T, et al. Molybdenum oxide MoOx: A versatile hole contact for silicon solar cells[J]. Applied Physics Letters, 2014, 105(23): 232109.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top